Journal of High Energy Physics

, 2016:135 | Cite as

Non-local probes in holographic theories with momentum relaxation

  • M. Reza Mohammadi Mozaffar
  • Ali Mollabashi
  • Farzad Omidi
Open Access
Regular Article - Theoretical Physics


We consider recently introduced solutions of Einstein gravity with minimally coupled massless scalars. The geometry is homogeneous, isotropic and asymptotically anti de-Sitter while the scalar fields have linear spatial-dependent profiles. The spatially-dependent marginal operators dual to scalar fields cause momentum dissipation in the deformed dual CFT. We study the effect of these marginal deformations on holographic entanglement measures and Wilson loop. We show that the structure of the universal terms of entanglement entropy for d > 2-dim deformed CFTs is corrected depending on the geometry of the entangling regions. In d = 2 case, the universal term is not corrected while momentum relaxation leads to a non-critical correction. We also show that decrease of the correlation length causes: the phase transition of holographic mutual information to happen at smaller separations and the confinement/deconfinement phase transition to take place at smaller critical lengths. The effective potential between point like external objects also gets corrected. We show that the strength of the corresponding force between these objects is an increasing function of the momentum relaxation parameter.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  2. [2]
    N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
  3. [3]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From Black Holes to Strange Metals, arXiv:1003.1728 [INSPIRE].
  9. [9]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Charge transport by holographic Fermi surfaces, Phys. Rev. D 88 (2013) 045016 [arXiv:1306.6396] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    A. Lucas, S. Sachdev and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D 89 (2014) 066018 [arXiv:1401.7993] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  14. [14]
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.A. Hartnoll and D.M. Hofman, Locally Critical Resistivities from Umklapp Scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid Holography and Massive Gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Bao, S. Harrison, S. Kachru and S. Sachdev, Vortex Lattices and Crystalline Geometries, Phys. Rev. D 88 (2013) 026002 [arXiv:1303.4390] [INSPIRE].ADSGoogle Scholar
  23. [23]
    N. Bao and S. Harrison, Crystalline Scaling Geometries from Vortex Lattices, Phys. Rev. D 88 (2013) 046009 [arXiv:1306.1532] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.R. Mohammadi Mozaffar and A. Mollabashi, Crystalline geometries from a fermionic vortex lattice, Phys. Rev. D 89 (2014) 046007 [arXiv:1307.7397] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L.-K. Chen, H. Guo and F.-W. Shu, Crystalline geometries from fermionic vortex lattice with hyperscaling violation, Phys. Rev. D 94 (2016) 026011 [arXiv:1511.01370] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    X.-H. Ge, Y. Tian, S.-Y. Wu and S.-F. Wu, Linear and quadratic in temperature resistivity from holography, arXiv:1606.07905 [INSPIRE].
  28. [28]
    D. Roychowdhury, Holography for anisotropic branes with hyperscaling violation, JHEP 01 (2016) 105 [arXiv:1511.06842] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S. Cremonini, H.-S. Liu, H. Lü and C.N. Pope, DC Conductivities from Non-Relativistic Scaling Geometries with Momentum Dissipation, arXiv:1608.04394 [INSPIRE].
  30. [30]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen and A. Sinha, Constraining gravity using entanglement in AdS/CFT, JHEP 05 (2014) 029 [arXiv:1401.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].MathSciNetMATHGoogle Scholar
  35. [35]
    W. Fischler and S. Kundu, Strongly Coupled Gauge Theories: High and Low Temperature Behavior of Non-local Observables, JHEP 05 (2013) 098 [arXiv:1212.2643] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    W. Fischler, A. Kundu and S. Kundu, Holographic Mutual Information at Finite Temperature, Phys. Rev. D 87 (2013) 126012 [arXiv:1212.4764] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Kundu and J.F. Pedraza, Aspects of Holographic Entanglement at Finite Temperature and Chemical Potential, JHEP 08 (2016) 177 [arXiv:1602.07353] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On Holographic Entanglement Entropy and Higher Curvature Gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Singh, Holographic Entanglement Entropy: RG Flows and Singular Surfaces, Ph.D. Thesis, University of Waterloo (2012).Google Scholar
  41. [41]
    R.C. Myers and A. Singh, Comments on Holographic Entanglement Entropy and RG Flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    B. Swingle, Entanglement Entropy and the Fermi Surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    Y. Zhang, T. Grover and A. Vishwanath, Entanglement entropy of critical spin liquids, Phys. Rev. Lett. 107 (2011) 067202 [arXiv:1102.0350] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Ding, A. Seidel and K. Yang, Entanglement Entropy of Fermi Liquids via Multidimensional Bosonization, Phys. Rev. X 2 (2012) 011012 [arXiv:1110.3004].CrossRefGoogle Scholar
  45. [45]
    M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].
  46. [46]
    T. Barthel, M.-C. Chung and U. Schollwock, Entanglement scaling in critical two dimensional fermionic and bosonic systems, Phys. Rev. A 74 (2006) 022329 [cond-mat/0602077].
  47. [47]
    W. Li, L. Ding, R. Yu, T. Roscilde and S. Haas, Scaling Behavior of Entanglement in Two- and Three-Dimensional Free Fermions, Phys. Rev. B 74 (2006) 073103 [quant-ph/0602094].
  48. [48]
    P. Calabrese, M. Mintchev and E. Vicari, Entanglement entropies in free fermion gases for arbitrary dimension, Europhys. Lett. 97 (2012) 20009 [arXiv:1110.6276] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Takayanagi, Strange metals and holographic entanglement entropy, Int. J. Mod. Phys. A 28 (2013) 1340004 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M. Alishahiha, A.F. Astaneh and M.R. Mohammadi Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].ADSGoogle Scholar
  53. [53]
    P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08 (2014) 051 [arXiv:1401.6088] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.M. Hosseini and Á. Véliz-Osorio, Entanglement and mutual information in two-dimensional nonrelativistic field theories, Phys. Rev. D 93 (2016) 026010 [arXiv:1510.03876] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    L. Basanisi and S. Chakrabortty, Holographic Entanglement Entropy in NMG, JHEP 09 (2016) 144 [arXiv:1606.01920] [INSPIRE].
  56. [56]
    Y. Ling, Z.-Y. Xian and Z. Zhou, Holographic Shear Viscosity in Hyperscaling Violating Theories without Translational Invariance, arXiv:1605.03879 [INSPIRE].
  57. [57]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M.R. Mohammadi Mozaffar, A. Mollabashi and F. Omidi, Holographic Mutual Information for Singular Surfaces, JHEP 12 (2015) 082 [arXiv:1511.00244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Alishahiha, M.R. Mohammadi Mozaffar and M.R. Tanhayi, On the Time Evolution of Holographic n-partite Information, JHEP 09 (2015) 165 [arXiv:1406.7677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    M.R. Tanhayi, Thermalization of Mutual Information in Hyperscaling Violating Backgrounds, JHEP 03 (2016) 202 [arXiv:1512.04104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    S. Mirabi, M.R. Tanhayi and R. Vazirian, On the Monogamy of Holographic n-partite Information, Phys. Rev. D 93 (2016) 104049 [arXiv:1603.00184] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S.L. Braunstein and C.M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72 (1994) 3439 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    S.-J. Gu, Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B 24 (2010) 4371 [arXiv:0811.3127].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between Quantum States and Gauge-Gravity Duality, Phys. Rev. Lett. 115 (2015) 261602 [arXiv:1507.07555] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. Bak, Information metric and Euclidean Janus correspondence, Phys. Lett. B 756 (2016) 200 [arXiv:1512.04735] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetMATHGoogle Scholar
  71. [71]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 [arXiv:1202.4436] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of Entanglement Entropy for Excited States, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].
  77. [77]
    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    F. Nogueira, Extremal Surfaces in Asymptotically AdS Charged Boson Stars Backgrounds, Phys. Rev. D 87 (2013) 106006 [arXiv:1301.4316] [INSPIRE].ADSGoogle Scholar
  79. [79]
    S.A. Gentle and M. Rangamani, Holographic entanglement and causal information in coherent states, JHEP 01 (2014) 120 [arXiv:1311.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    G. Refael and J.E. Moore, Entanglement Entropy of Random Quantum Critical Points in One Dimension, Phys. Rev. Lett. 93 (2004) 260602 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • M. Reza Mohammadi Mozaffar
    • 1
  • Ali Mollabashi
    • 1
  • Farzad Omidi
    • 2
  1. 1.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.School of AstronomyInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations