Advertisement

Journal of High Energy Physics

, 2016:105 | Cite as

Multiple fibrations in Calabi-Yau geometry and string dualities

  • Lara B. Anderson
  • Xin Gao
  • James Gray
  • Seung-Joo Lee
Open Access
Regular Article - Theoretical Physics

Abstract

In this work we explore the physics associated to Calabi-Yau (CY) n-folds that can be described as a fibration in more than one way. Beginning with F-theory vacua in various dimensions, we consider limits/dualities with M-theory, type IIA, and heterotic string theories. Our results include many M-/F-theory correspondences in which distinct F-theory vacua — associated to different elliptic fibrations of the same CY n-fold — give rise to the same M-theory limit in one dimension lower. Examples include 5-dimensional correspondences between 6-dimensional theories with Abelian, non-Abelian and superconformal structure, as well as examples of higher rank Mordell-Weil geometries. In addition, in the context of heterotic/F-theory duality, we investigate the role played by multiple K3- and elliptic fibrations in known and novel string dualities in 8-, 6- and 4-dimensional theories. Here we systematically summarize nested fibration structures and comment on the roles they play in T-duality, mirror symmetry, and 4-dimensional compactifications of F-theory with G-flux. This investigation of duality structures is made possible by geometric tools developed in a companion paper [1].

Keywords

F-Theory String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Tools for CICYs in F-theory, arXiv:1608.07554 [INSPIRE].
  2. [2]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Gross, A Finiteness Theorem for Elliptic Calabi-Yau Threefolds, Duke Math. J. 74 (1994) 271.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    G. Di Cerbo and R. Svaldi, Log birational boundedness of Calabi-Yau pairs, arXiv:1608.02997.
  5. [5]
    A. Grassi, On minimal models of elliptic threefolds, Math. Ann. 290 (1991) 287.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    N. Nakayama, On Weierstrass Models, in Algebraic Geometry and Commutative Algebra. Vol. II, Kinokuniya, Tokyo Japan (1987), pg. 405.Google Scholar
  7. [7]
    D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].ADSMATHGoogle Scholar
  8. [8]
    D.R. Morrison and W. Taylor, Non-Higgsable clusters for 4D F-theory models, JHEP 05 (2015) 080 [arXiv:1412.6112] [INSPIRE].
  9. [9]
    M. Artin, F. Rodriguez-Villegas and J. Tate, On the Jacobians of Plane Cubics, Adv. Math. 198 (2005) 366.Google Scholar
  10. [10]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) R7345 [hep-th/9702165] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    P. Aluffi and M. Esole, Chern class identities from tadpole matching in type IIB and F-theory, JHEP 03 (2009) 032 [arXiv:0710.2544] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Collinucci, New F-theory lifts, JHEP 08 (2009) 076 [arXiv:0812.0175] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].
  15. [15]
    A. Clingher, R. Donagi and M. Wijnholt, The Sen Limit, Adv. Theor. Math. Phys. 18 (2014) 613 [arXiv:1212.4505] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J.J. Heckman, H. Lin and S.-T. Yau, Building Blocks for Generalized Heterotic/F-theory Duality, Adv. Theor. Math. Phys. 18 (2014) 1463 [arXiv:1311.6477] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Gray, A.S. Haupt and A. Lukas, All Complete Intersection Calabi-Yau Four-Folds, JHEP 07 (2013) 070 [arXiv:1303.1832] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J. Gray, A. Haupt and A. Lukas, Calabi-Yau Fourfolds in Products of Projective Space, Proc. Symp. Pure Math. 88 (2014) 281.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    J. Gray, A.S. Haupt and A. Lukas, Topological Invariants and Fibration Structure of Complete Intersection Calabi-Yau Four-Folds, JHEP 09 (2014) 093 [arXiv:1405.2073] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Constantin, J. Gray and A. Lukas, Hodge Numbers for All CICY Quotients, arXiv:1607.01830 [INSPIRE].
  22. [22]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    F. Rohsiepe, Fibration structures in toric Calabi-Yau fourfolds, hep-th/0502138 [INSPIRE].
  24. [24]
    V. Braun, Toric Elliptic Fibrations and F-theory Compactifications, JHEP 01 (2013) 016 [arXiv:1110.4883] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    L.B. Anderson, F. Apruzzi, X. Gao, J. Gray and S.-J. Lee, A new construction of Calabi-Yau manifolds: Generalized CICYs, Nucl. Phys. B 906 (2016) 441 [arXiv:1507.03235] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    L.B. Anderson, F. Apruzzi, X. Gao, J. Gray and S.-J. Lee, Instanton superpotentials, Calabi-Yau geometry and fibrations, Phys. Rev. D 93 (2016) 086001 [arXiv:1511.05188] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Berglund and T. Hubsch, On Calabi-Yau generalized complete intersections from Hirzebruch varieties and novel K3-fibrations, arXiv:1606.07420 [INSPIRE].
  28. [28]
    L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, A Catalogue of Fibration Structures in CICY threefolds and fourfolds, to appear.Google Scholar
  29. [29]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  30. [30]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  31. [31]
    P. Candelas, D.-E. Diaconescu, B. Florea, D.R. Morrison and G. Rajesh, Codimension three bundle singularities in F-theory, JHEP 06 (2002) 014 [hep-th/0009228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    S.B. Johnson and W. Taylor, Enhanced gauge symmetry in 6D F-theory models and tuned elliptic Calabi-Yau threefolds, arXiv:1605.08052 [INSPIRE].
  33. [33]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].
  34. [34]
    P. Candelas and H. Skarke, F theory, SO(32) and toric geometry, Phys. Lett. B 413 (1997) 63 [hep-th/9706226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M.J. Duff, R. Minasian and E. Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B 465 (1996) 413 [hep-th/9601036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S.B. Johnson and W. Taylor, Calabi-Yau threefolds with large h 2,1, JHEP 10 (2014) 23 [arXiv:1406.0514] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Candelas, A. Constantin and H. Skarke, An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts, Commun. Math. Phys. 324 (2013) 937 [arXiv:1207.4792] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J. Kollar, Deformations of elliptic Calabi-Yau manifolds, arXiv:1206.5721 [INSPIRE].
  39. [39]
    K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Int. J. Math. 3 (1993) 439.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    P.M.H. Wilson, The existence of elliptic fibre space structures on Calabi-Yau threefolds, Math. Ann. 300 (1994) 693.ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    P.M.H. Wilson, The existence of elliptic fibre space structures on Calabi-Yau threefolds II, Math. Proc. Cambridge Phil. Soc. 123 (1998) 259.ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    P. Deligne, Courbes elliptiques: formulaire d’après J. Tate, in Lecture Notes in Mathematics. Vol. 476: Modular functions of one variable, IV, Springer, Berlin Germany (1975), pg. 53.Google Scholar
  43. [43]
    J. Gray, Y.-H. He, A. Ilderton and A. Lukas, A New Method for Finding Vacua in String Phenomenology, JHEP 07 (2007) 023 [hep-th/0703249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    F. Bonetti and T.W. Grimm, Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds, JHEP 05 (2012) 019 [arXiv:1112.1082] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    T.W. Grimm and W. Taylor, Structure in 6D and 4D N = 1 supergravity theories from F-theory, JHEP 10 (2012) 105 [arXiv:1204.3092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    K. Kodaira, On compact analytic surfaces. II, Ann. Math. 77 (1963) 563.CrossRefMATHGoogle Scholar
  47. [47]
    K. Kodaira, On compact analytic surfaces. III, Ann. Math. 78 (1963) 1.MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    J. Tate, Algorithm for Determining the Type of a Singular Fiber in an Elliptic Pencil, in Lecture Notes in Mathematics. Vol. 476: Modular functions of one variable, IV, Springer, Berlin Germany (1975), pg. 33.Google Scholar
  49. [49]
    M. Cvetič, D. Klevers, D.K.M. Peña, P.-K. Oehlmann and J. Reuter, Three-Family Particle Physics Models from Global F-theory Compactifications, JHEP 08 (2015) 087 [arXiv:1503.02068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    V. Braun and D.R. Morrison, F-theory on Genus-One Fibrations, JHEP 08 (2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly Free Chiral Theories in Six-Dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].
  54. [54]
    V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20.ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    T. Shioda, Mordell-Weil lattices for higher genus fibration over a curve. In New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser. 264 (1999) 359.MathSciNetMATHGoogle Scholar
  58. [58]
    R. Wazir, Arithmetic on elliptic threefolds, Compos. Math. 140 (2004) 567.MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    V. Braun, T.W. Grimm and J. Keitel, Complete Intersection Fibers in F-theory, JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].
  61. [61]
    M. Kreuzer and H. Skarke, PALP: A Package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun. 157 (2004) 87 [math/0204356] [INSPIRE].
  62. [62]
    V. Braun, T.W. Grimm and J. Keitel, Geometric Engineering in Toric F-theory and GUTs with U(1) Gauge Factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996)121 [hep-th/9603003] [INSPIRE].
  64. [64]
    D.S. Park, Anomaly Equations and Intersection Theory, JHEP 01 (2012) 093 [arXiv:1111.2351] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    D.R. Morrison and D.S. Park, F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, Elliptic fibrations for SU(5) × U(1) × U(1) F-theory vacua, Phys. Rev. D 88 (2013) 046005 [arXiv:1303.5054] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Cvetič, D. Klevers and H. Piragua, F-Theory Compactifications with Multiple U(1)-Factors: Constructing Elliptic Fibrations with Rational Sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, SU(5) Tops with Multiple U(1)s in F-theory, Nucl. Phys. B 882 (2014) 1 [arXiv:1307.2902] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Cvetič, D. Klevers, H. Piragua and W. Taylor, General U(1) × U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure, JHEP 11 (2015)204 [arXiv:1507.05954] [INSPIRE].
  71. [71]
    M. Cvetič, A. Grassi, D. Klevers and H. Piragua, Chiral Four-Dimensional F-theory Compactifications With SU(5) and Multiple U(1)-Factors, JHEP 04 (2014) 010 [arXiv:1306.3987] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    M. Cvetič, D. Klevers and H. Piragua, F-Theory Compactifications with Multiple U(1)-Factors: Addendum, JHEP 12 (2013) 056 [arXiv:1307.6425] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  73. [73]
    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].
  74. [74]
    L.B. Anderson, I. Garc´ıa-Etxebarria, T.W. Grimm and J. Keitel, Physics of F-theory compactifications without section, JHEP 12 (2014) 156 [arXiv:1406.5180] [INSPIRE].
  75. [75]
    T.W. Grimm, A. Kapfer and D. Klevers, The Arithmetic of Elliptic Fibrations in Gauge Theories on a Circle, JHEP 06 (2016) 112 [arXiv:1510.04281] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    R. Donagi, S. Katz and M. Wijnholt, Weak Coupling, Degeneration and Log Calabi-Yau Spaces, arXiv:1212.0553 [INSPIRE].
  77. [77]
    G. Kempf, D. Knudsen, F.and Mumford and B. Saint-Donat, Toroidal Embeddings I, in Lecture Notes in Mathematics. Vol. 339, Springer-Verlag, Berlin Germany (1973).Google Scholar
  78. [78]
    Y. Kawamata and Y. Namikawa, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties, Invent. Math. 118 (1994) 395.ADSMathSciNetCrossRefMATHGoogle Scholar
  79. [79]
    P.S. Aspinwall, Aspects of the hypermultiplet moduli space in string duality, JHEP 04 (1998) 019 [hep-th/9802194] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    L.B. Anderson and W. Taylor, Geometric constraints in dual F-theory and heterotic string compactifications, JHEP 08 (2014) 025 [arXiv:1405.2074] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    F. Bonetti, T.W. Grimm and S. Hohenegger, Exploring 6D origins of 5D supergravities with Chern-Simons terms, JHEP 05 (2013) 124 [arXiv:1303.2661] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    T.W. Grimm, A. Kapfer and J. Keitel, Effective action of 6D F-theory with U(1) factors: Rational sections make Chern-Simons terms jump, JHEP 07 (2013) 115 [arXiv:1305.1929] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory reductions with higher-derivative terms — Part II, JHEP 12 (2015) 117 [arXiv:1507.00343] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    G. Rajesh, Toric geometry and F-theory/heterotic duality in four-dimensions, JHEP 12 (1998) 018 [hep-th/9811240] [INSPIRE].
  85. [85]
    P. Berglund and P. Mayr, Stability of vector bundles from F-theory, JHEP 12 (1999) 009 [hep-th/9904114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  86. [86]
    M. Cvetič, A. Grassi, D. Klevers, M. Poretschkin and P. Song, Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality, JHEP 04 (2016) 041 [arXiv:1511.08208] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    M. Cvetič, A. Grassi and M. Poretschkin, Discrete Symmetries in Heterotic/F-theory Duality and Mirror Symmetry, arXiv:1607.03176 [INSPIRE].
  89. [89]
    A. Clingher and J.W. Morgan, Mathematics underlying the F-theory/Heterotic string duality in eight-dimensions, Commun. Math. Phys. 254 (2005) 513 [math/0308106] [INSPIRE].
  90. [90]
    W. Fulton, Introduction to Toric Varieties, in Annals of Mathematical Studies. vol 131, Princeton University Press, Princeton U.S.A. (1993).Google Scholar
  91. [91]
    P. Candelas and A. Font, Duality between the webs of heterotic and type-II vacua, Nucl. Phys. B 511 (1998) 295 [hep-th/9603170] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  92. [92]
    P.S. Aspinwall and M. Gross, The SO(32) heterotic string on a K3 surface, Phys. Lett. B 387 (1996) 735 [hep-th/9605131] [INSPIRE].
  93. [93]
    M. Berkooz, R.G. Leigh, J. Polchinski, J.H. Schwarz, N. Seiberg and E. Witten, Anomalies, dualities and topology of D = 6 N = 1 superstring vacua, Nucl. Phys. B 475 (1996) 115 [hep-th/9605184] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  94. [94]
    A.P. Braun, Y. Kimura and T. Watari, On the Classification of Elliptic Fibrations modulo Isomorphism on K3 Surfaces with large Picard Number, arXiv:1312.4421 [INSPIRE].
  95. [95]
    J. McOrist, D.R. Morrison and S. Sethi, Geometries, Non-Geometries and Fluxes, Adv. Theor. Math. Phys. 14 (2010) 1515 [arXiv:1004.5447] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  96. [96]
    P.S. Aspinwall and M. Gross, Heterotic-heterotic string duality and multiple K3 fibrations, Phys. Lett. B 382 (1996) 81 [hep-th/9602118] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  98. [98]
    A. Lukas and K.S. Stelle, Heterotic anomaly cancellation in five-dimensions, JHEP 01 (2000) 010 [hep-th/9911156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  99. [99]
    J. Louis, M. Schasny and R. Valandro, 6D Effective Action of Heterotic Compactification on K3 with Nontrivial Gauge Bundles, JHEP 04 (2012) 028 [arXiv:1112.5106] [INSPIRE].
  100. [100]
    P. Candelas, E. Perevalov and G. Rajesh, F theory duals of nonperturbative heterotic E 8 × E 8 vacua in six-dimensions, Nucl. Phys. B 502 (1997) 613 [hep-th/9606133] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  101. [101]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, New York U.S.A. (1977).CrossRefGoogle Scholar
  102. [102]
    M. Demazure, H.C. Pinkham and B. Teissier, Lecture Notes in Mathematics. Vol. 777: Seminaire sur les singularites des surfaces, Springer, Berlin Germany (1976).Google Scholar
  103. [103]
    G. Aldazabal, A. Font, L.E. Ibáñez and F. Quevedo, Heterotic/heterotic duality in D = 6, D = 4, Phys. Lett. B 380(1996)33 [hep-th/9602097] [INSPIRE].
  104. [104]
    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  105. [105]
    P.S. Aspinwall and R.Y. Donagi, The Heterotic string, the tangent bundle and derived categories, Adv. Theor. Math. Phys. 2 (1998) 1041 [hep-th/9806094] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  106. [106]
    J. Louis and R. Valandro, Heterotic-Type II Duality in the Hypermultiplet Sector, JHEP 05 (2012) 016 [arXiv:1112.3566] [INSPIRE].
  107. [107]
    K. Hori et al., Clay mathematics monographs. Vol. 1: Mirror symmetry, AMS Press, Providence U.S.A. (2003), http://www.claymath.org/library/monographs/cmim01.pdf.
  108. [108]
    P. Berglund and P. Mayr, Heterotic string/F theory duality from mirror symmetry, Adv. Theor. Math. Phys. 2 (1999) 1307 [hep-th/9811217] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  109. [109]
    S. Alexandrov, J. Louis, B. Pioline and R. Valandro, \( \mathcal{N}=2 \) Heterotic-Type II duality and bundle moduli, JHEP 08 (2014) 092 [arXiv:1405.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    N. Leung and S. Yau, Mirror Symmetry of Fourier-Mukai Transformation for Elliptic Calabi-Yau Manifolds, in The Many Facets of Geometry: A Tribute to Nigel Hitchin, Oxford University Press, Oxford U.K. (2007).Google Scholar
  111. [111]
    D.-E. Diaconescu and G. Rajesh, Geometrical aspects of five-branes in heterotic/F theory duality in four-dimensions, JHEP 06 (1999) 002 [hep-th/9903104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  112. [112]
    C.T.C. Wall, Classification problems in differential topology. V, Invent. Math. 1 (1966) 355.Google Scholar
  113. [113]
    T. Hubsch, Calabi-Yau manifolds: A Bestiary for physicists, World Scientific, Singapore (1994).Google Scholar
  114. [114]
    L.B. Anderson, J.J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  115. [115]
    L.B. Anderson, Spectral Covers, Integrality Conditions and Heterotic/F-theory Duality, arXiv:1603.09198 [INSPIRE].
  116. [116]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A Comprehensive Scan for Heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  118. [118]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  119. [119]
    J. Distler and S. Kachru, Duality of (0, 2) string vacua, Nucl. Phys. B 442 (1995) 64 [hep-th/9501111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  120. [120]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  121. [121]
    R. Blumenhagen, Target space duality for (0, 2) compactifications, Nucl. Phys. B 513 (1998) 573 [hep-th/9707198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  122. [122]
    R. Blumenhagen, (0, 2) Target space duality, CICYs and reflexive sheaves, Nucl. Phys. B 514 (1998) 688 [hep-th/9710021] [INSPIRE].
  123. [123]
    P. Candelas, P.S. Green and T. Hubsch, Rolling Among Calabi-Yau Vacua, Nucl. Phys. B 330 (1990) 49 [INSPIRE].
  124. [124]
    R. Blumenhagen and T. Rahn, Landscape Study of Target Space Duality of (0, 2) Heterotic String Models, JHEP 09 (2011) 098 [arXiv:1106.4998] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  125. [125]
    T. Rahn, Target Space Dualities of Heterotic Grand Unified Theories, Proc. Symp. Pure Math. 85 (2012) 423 [arXiv:1111.0491] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  126. [126]
    L.B. Anderson and H. Feng, New Evidence for (0, 2) Target Space Duality, arXiv:1607.04628 [INSPIRE].
  127. [127]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].ADSMATHGoogle Scholar
  128. [128]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  129. [129]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  130. [130]
    L.B. Anderson, A. Constantin, S.-J. Lee and A. Lukas, Hypercharge Flux in Heterotic Compactifications, Phys. Rev. D 91 (2015) 046008 [arXiv:1411.0034] [INSPIRE].ADSGoogle Scholar
  131. [131]
    E.I. Buchbinder, A. Constantin, J. Gray and A. Lukas, Yukawa Unification in Heterotic String Theory, Phys. Rev. D 94 (2016) 046005 [arXiv:1606.04032] [INSPIRE].ADSGoogle Scholar
  132. [132]
    L. Bhardwaj, M. Del Zotto, J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, F-theory and the Classification of Little Strings, Phys. Rev. D 93 (2016) 086002 [arXiv:1511.05565] [INSPIRE].ADSGoogle Scholar
  133. [133]
    S. Hohenegger, A. Iqbal and S.-J. Rey, Instanton-monopole correspondence from M-branes on \( {\mathbb{S}}^1 \) and little string theory, Phys. Rev. D 93 (2016) 066016 [arXiv:1511.02787] [INSPIRE].ADSGoogle Scholar
  134. [134]
    D.R. Morrison and T. Rudelius, F-theory and Unpaired Tensors in 6D SCFTs and LSTs, arXiv:1605.08045 [INSPIRE].
  135. [135]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  136. [136]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].
  137. [137]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  138. [138]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Geometry of 6D RG Flows, JHEP 09 (2015) 052 [arXiv:1505.00009] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  139. [139]
    D.R. Morrison and C. Vafa, F-theory and \( \mathcal{N}=1 \) SCFTs in four dimensions, JHEP 08 (2016) 070 [arXiv:1604.03560] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    S. Schäfer-Nameki and T. Weigand, F-theory and 2d (0, 2) theories, JHEP 05 (2016) 059 [arXiv:1601.02015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  141. [141]
    F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, UV Completions for Non-Critical Strings, JHEP 07 (2016) 045 [arXiv:1602.04221] [INSPIRE].ADSCrossRefGoogle Scholar
  142. [142]
    W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-0-2 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, (2015).
  143. [143]
    J. Gray, Y.-H. He, A. Ilderton and A. Lukas, STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology, Comput. Phys. Commun. 180 (2009) 107 [arXiv:0801.1508] [INSPIRE].
  144. [144]
    J. Gray, Y.-H. He and A. Lukas, Algorithmic Algebraic Geometry and Flux Vacua, JHEP 09 (2006) 031 [hep-th/0606122] [INSPIRE].
  145. [145]
    E. Kunz, Introduction to plane algebraic curves, Birkhauser, Boston U.S.A. (2005).MATHGoogle Scholar
  146. [146]
    H. Neudecker and J.R. Magnus, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley and Sons, New York U.S.A. (1988).MATHGoogle Scholar
  147. [147]
    A. Klemm, B. Lian, S.S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys. B 518 (1998) 515 [hep-th/9701023] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Lara B. Anderson
    • 1
  • Xin Gao
    • 1
  • James Gray
    • 1
  • Seung-Joo Lee
    • 1
  1. 1.Physics Department, Virginia TechBlacksburgU.S.A.

Personalised recommendations