Advertisement

Doubling up on supersymmetry in the Higgs sector

  • John Ellis
  • Jérémie Quevillon
  • Verónica Sanz
Open Access
Regular Article - Theoretical Physics

Abstract

We explore the possibility that physics at the TeV scale possesses approximate N =2 supersymmetry, which is reduced to the N =1 minimal supersymmetric extension of the Standard Model (MSSM) at the electroweak scale. This doubling of supersymmetry modifies the Higgs sector of the theory, with consequences for the masses, mixings and couplings of the MSSM Higgs bosons, whose phenomenological consequences we explore in this paper. The mass of the lightest neutral Higgs boson h is independent of tan β at the tree level, and the decoupling limit is realized whatever the values of the heavy Higgs boson masses. Radiative corrections to the top quark and stop squarks dominate over those due to particles in N = 2 gauge multiplets. We assume that these radiative corrections fix m h ≃ 125 GeV, whatever the masses of the other neutral Higgs bosons H, A, a scenario that we term the h2MSSM. Since the H, A bosons decouple from the W and Z bosons in the h2MSSM at tree level, only the LHC constraints on H, A and H ± couplings to fermions are applicable. These and the indirect constraints from LHC measurements of h couplings are consistent with m A ≳ 200 GeV for tan β ∈ (2, 8) in the h2MSSM.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Antoniadis, K. Benakli, A. Delgado, M. Quirós and M. Tuckmantel, Split extended supersymmetry from intersecting branes, Nucl. Phys. B 744 (2006) 156 [hep-th/0601003] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    I. Antoniadis, K. Benakli, A. Delgado and M. Quirós, A new gauge mediation theory, Adv. Stud. Theor. Phys. 2 (2008) 645 [hep-ph/0610265] [INSPIRE].
  3. [3]
    I. Antoniadis, A. Delgado, K. Benakli, M. Quirós and M. Tuckmantel, Splitting extended supersymmetry, Phys. Lett. B 634 (2006) 302 [hep-ph/0507192] [INSPIRE].
  4. [4]
    L. Álvarez-Gaumé and S.F. Hassan, Introduction to S duality in N = 2 supersymmetric gauge theories: a pedagogical review of the work of Seiberg and Witten, Fortsch. Phys. 45 (1997) 159 [hep-th/9701069] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].
  6. [6]
    R. Barbieri, L.J. Hall and Y. Nomura, Models of Scherk-Schwarz symmetry breaking in 5D: classification and calculability, Nucl. Phys. B 624 (2002) 63 [hep-th/0107004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    T.-J. Li, N = 2 supersymmetric GUT breaking on T 2 orbifolds, Nucl. Phys. B 619 (2001) 75 [hep-ph/0108120] [INSPIRE].
  8. [8]
    F. del Aguila, M. Dugan, B. Grinstein, L.J. Hall, G.G. Ross and P.C. West, Low-energy models with two supersymmetries, Nucl. Phys. B 250 (1985) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Polonsky and S.-F. Su, Low-energy limits of theories with two supersymmetries, Phys. Rev. D 63 (2001) 035007 [hep-ph/0006174] [INSPIRE].
  10. [10]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].
  11. [11]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K. Benakli and M.D. Goodsell, Dirac gauginos in general gauge mediation, Nucl. Phys. B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S.Y. Choi, M. Drees, J. Kalinowski, J.M. Kim, E. Popenda and P.M. Zerwas, Color-octet scalars of N = 2 supersymmetry at the LHC, Phys. Lett. B 672 (2009) 246 [arXiv:0812.3586] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Bélanger, K. Benakli, M. Goodsell, C. Moura and A. Pukhov, Dark matter with Dirac and Majorana gaugino masses, JCAP 08 (2009) 027 [arXiv:0905.1043] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    K. Benakli and M.D. Goodsell, Dirac gauginos and kinetic mixing, Nucl. Phys. B 830 (2010) 315 [arXiv:0909.0017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    K. Benakli and M.D. Goodsell, Dirac gauginos, gauge mediation and unification, Nucl. Phys. B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S.Y. Choi, D. Choudhury, A. Freitas, J. Kalinowski, J.M. Kim and P.M. Zerwas, Dirac neutralinos and electroweak scalar bosons of N = 1/N = 2 hybrid supersymmetry at colliders, JHEP 08 (2010) 025 [arXiv:1005.0818] [INSPIRE].ADSMATHGoogle Scholar
  18. [18]
    S.Y. Choi, D. Choudhury, A. Freitas, J. Kalinowski and P.M. Zerwas, The extended Higgs system in R-symmetric supersymmetry theories, Phys. Lett. B 697 (2011) 215 [Erratum ibid. B 698 (2011) 457] [arXiv:1012.2688] [INSPIRE].
  19. [19]
    S. Abel and M. Goodsell, Easy Dirac gauginos, JHEP 06 (2011) 064 [arXiv:1102.0014] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    K. Benakli, M.D. Goodsell and A.-K. Maier, Generating μ and Bμ in models with Dirac gauginos, Nucl. Phys. B 851 (2011) 445 [arXiv:1104.2695] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    H. Itoyama and N. Maru, D-term dynamical supersymmetry breaking generating split N = 2 gaugino masses of mixed Majorana-Dirac type, Int. J. Mod. Phys. A 27 (2012) 1250159 [arXiv:1109.2276] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    M. Heikinheimo, M. Kellerstein and V. Sanz, How many supersymmetries?, JHEP 04 (2012) 043 [arXiv:1111.4322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G.D. Kribs and A. Martin, Supersoft supersymmetry is super-safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.D. Goodsell, Two-loop RGEs with Dirac gaugino masses, JHEP 01 (2013) 066 [arXiv:1206.6697] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Benakli, M.D. Goodsell and F. Staub, Dirac gauginos and the 125 GeV Higgs, JHEP 06 (2013) 073 [arXiv:1211.0552] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Itoyama and N. Maru, D-term triggered dynamical supersymmetry breaking, Phys. Rev. D 88 (2013) 025012 [arXiv:1301.7548] [INSPIRE].ADSGoogle Scholar
  27. [27]
    E. Dudas, M. Goodsell, L. Heurtier and P. Tziveloglou, Flavour models with Dirac and fake gluinos, Nucl. Phys. B 884 (2014) 632 [arXiv:1312.2011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    H. Itoyama and N. Maru, 126 GeV Higgs boson associated with D-term triggered dynamical supersymmetry breaking, Symmetry 7 (2015) 193 [arXiv:1312.4157] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    K. Benakli, M. Goodsell, F. Staub and W. Porod, Constrained minimal Dirac gaugino supersymmetric Standard Model, Phys. Rev. D 90 (2014) 045017 [arXiv:1403.5122] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.D. Goodsell and P. Tziveloglou, Dirac gauginos in low scale supersymmetry breaking, Nucl. Phys. B 889 (2014) 650 [arXiv:1407.5076] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Higgs boson mass and electroweak observables in the MRSSM, JHEP 12 (2014) 124 [arXiv:1410.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Two-loop correction to the Higgs boson mass in the MRSSM, Adv. High Energy Phys. 2015 (2015) 760729 [arXiv:1504.05386] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    M.D. Goodsell, M.E. Krauss, T. Müller, W. Porod and F. Staub, Dark matter scenarios in a constrained model with Dirac gauginos, JHEP 10 (2015) 132 [arXiv:1507.01010] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Exploring the Higgs sector of the MRSSM with a light scalar, JHEP 03 (2016) 007 [arXiv:1511.09334] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Braathen, M.D. Goodsell and P. Slavich, Leading two-loop corrections to the Higgs boson masses in SUSY models with Dirac gauginos, JHEP 09 (2016) 045 [arXiv:1606.09213] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.E. Nelson, N. Rius, V. Sanz and M. Ünsal, The minimal supersymmetric model without a μ term, JHEP 08 (2002) 039 [hep-ph/0206102] [INSPIRE].
  37. [37]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  38. [38]
    K. Benakli, M.D. Goodsell and F. Staub, Dirac gauginos and the 125 GeV Higgs, JHEP 06 (2013) 073 [arXiv:1211.0552] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L.J. Hall and L. Randall, U(1)R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L. Randall and N. Rius, The minimal U(1)R symmetric model revisited, Phys. Lett. B 286 (1992) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Dine and D. MacIntire, Supersymmetry, naturalness and dynamical supersymmetry breaking, Phys. Rev. D 46 (1992) 2594 [hep-ph/9205227] [INSPIRE].
  42. [42]
    L. Maiani, A.D. Polosa and V. Riquer, Bounds to the Higgs sector masses in minimal supersymmetry from LHC data, Phys. Lett. B 724 (2013) 274 [arXiv:1305.2172] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SU SY : reopening the low tan β regime and heavy Higgs searches, JHEP 10 (2013) 028 [arXiv:1304.1787] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Djouadi, L. Maiani, G. Moreau, A. Polosa, J. Quevillon and V. Riquer, The post-Higgs MSSM scenario: habemus MSSM?, Eur. Phys. J. C 73 (2013) 2650 [arXiv:1307.5205] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    E. Bagnaschi et al., Benchmark scenarios for low tan β in the MSSM, LHCHXSWG-2015-002, CERN, Geneva Switzerland (2015).
  47. [47]
    P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy supersymmetry, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Lee and C.E.M. Wagner, Higgs bosons in heavy supersymmetry with an intermediate m A, Phys. Rev. D 92 (2015) 075032 [arXiv:1508.00576] [INSPIRE].ADSGoogle Scholar
  49. [49]
    K. Benakli, M.D. Goodsell and A.-K. Maier, Generating μ and Bμ in models with Dirac gauginos, Nucl. Phys. B 851 (2011) 445 [arXiv:1104.2695] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    I. Jack and D.R.T. Jones, Nonstandard soft supersymmetry breaking, Phys. Lett. B 457 (1999) 101 [hep-ph/9903365] [INSPIRE].
  51. [51]
    ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
  52. [52]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  53. [53]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  54. [54]
    A. Djouadi, V. Driesen, W. Hollik and J.I. Illana, The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime, Eur. Phys. J. C 1 (1998) 149 [hep-ph/9612362] [INSPIRE].
  55. [55]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Djouadi, J. Quevillon and R. Vega-Morales, Into the multi-TeV scale with a Higgs golden ratio, Phys. Lett. B 757 (2016) 412 [arXiv:1509.03913] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs effective theory: extended Higgs sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    A.E. Nelson, N. Rius, V. Sanz and M. Ünsal, The minimal supersymmetric model without a μ term, JHEP 08 (2002) 039 [hep-ph/0206102] [INSPIRE].
  60. [60]
    G. Marandella, C. Schappacher and A. Strumia, Supersymmetry and precision data after LEP2, Nucl. Phys. B 715 (2005) 173 [hep-ph/0502095] [INSPIRE].
  61. [61]
    H. Beauchesne and T. Gregoire, Electroweak precision measurements in supersymmetric models with a U(1)R lepton number, JHEP 05 (2014) 051 [arXiv:1402.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  63. [63]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  64. [64]
    J. Ellis, V. Sanz and T. You, The effective Standard Model after LHC run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    J. Ellis, V. Sanz and T. You, Complete Higgs sector constraints on dimension-6 operators JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].
  66. [66]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric Standard Model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • John Ellis
    • 1
    • 2
  • Jérémie Quevillon
    • 1
  • Verónica Sanz
    • 3
  1. 1.Theoretical Particle Physics & Cosmology Group, Department of PhysicsKing’s College LondonLondonU.K.
  2. 2.Theoretical Physics Department, CERNGeneva 23Switzerland
  3. 3.Department of Physics and AstronomyUniversity of SussexBrightonU.K.

Personalised recommendations