Advertisement

Correlations in double parton distributions: perturbative and non-perturbative effects

  • Matteo Rinaldi
  • Sergio Scopetta
  • Marco Traini
  • Vicente Vento
Open Access
Regular Article - Theoretical Physics

Abstract

The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

Keywords

Deep Inelastic Scattering (Phenomenology) Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Paver and D. Treleani, Multi-quark scattering and large p T jet production in hadronic collisions, Nuovo Cim. A 70 (1982) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.R. Gaunt and W.J. Stirling, Double parton distributions incorporating perturbative QCD evolution and momentum and quark number sum rules, JHEP 03 (2010) 005 [arXiv:0910.4347] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    M. Diehl, D. Ostermeier and A. Schäfer, Elements of a theory for multiparton interactions in QCD, JHEP 03 (2012) 089 [arXiv:1111.0910] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    A.V. Manohar and W.J. Waalewijn, A QCD analysis of double parton scattering: color correlations, interference effects and evolution, Phys. Rev. D 85 (2012) 114009 [arXiv:1202.3794] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Bansal et al., Progress in double parton scattering studies, arXiv:1410.6664 [INSPIRE].
  6. [6]
    A. Szczurek, Double parton scattering at high energies, Acta Phys. Polon. B 46 (2015) 1415 [arXiv:1504.06491] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Calucci and D. Treleani, Proton structure in transverse space and the effective cross-section, Phys. Rev. D 60 (1999) 054023 [hep-ph/9902479] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Guidal, H. Moutarde and M. Vanderhaeghen, Generalized parton distributions in the valence region from deeply virtual Compton scattering, Rept. Prog. Phys. 76 (2013) 066202 [arXiv:1303.6600] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Dupre, M. Guidal and M. Vanderhaeghen, Tomographic image of the proton, arXiv:1606.07821 [INSPIRE].
  10. [10]
    E. Cattaruzza, A. Del Fabbro and D. Treleani, Fractional momentum correlations in multiple production of W bosons and of \( b\overline{b} \) pairs in high energy pp collisions, Phys. Rev. D 72 (2005) 034022 [hep-ph/0507052] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, Polarization effects in double open-charm production at LHCb, JHEP 04 (2015) 034 [arXiv:1501.07291] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H.-M. Chang, A.V. Manohar and W.J. Waalewijn, Double parton correlations in the bag model, Phys. Rev. D 87 (2013) 034009 [arXiv:1211.3132] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Rinaldi, S. Scopetta and V. Vento, Double parton correlations in constituent quark models, Phys. Rev. D 87 (2013) 114021 [arXiv:1302.6462] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Rinaldi, S. Scopetta, M. Traini and V. Vento, Double parton correlations and constituent quark models: a light front approach to the valence sector, JHEP 12 (2014) 028 [arXiv:1409.1500] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    W. Broniowski and E. Ruiz Arriola, Valence double parton distributions of the nucleon in a simple model, Few Body Syst. 55 (2014) 381 [arXiv:1310.8419] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W. Broniowski, E. Ruiz Arriola and K. Golec-Biernat, Generalized valon model for double parton distributions, Few Body Syst. 57 (2016) 405 [arXiv:1602.00254] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Axial Field Spectrometer collaboration, T. Akesson et al., Double parton scattering in pp collisions at \( \sqrt{s}=63 \) GeV, Z. Phys. C 34 (1987) 163 [INSPIRE].
  18. [18]
    UA2 collaboration, J. Alitti et al., A study of multi-jet events at the CERN \( p\overline{p} \) collider and a search for double parton scattering, Phys. Lett. B 268 (1991) 145 [INSPIRE].
  19. [19]
    CDF collaboration, F. Abe et al., Double parton scattering in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 56 (1997) 3811 [INSPIRE].
  20. [20]
    D0 collaboration, V.M. Abazov et al., Double parton interactions in γ + 3 jet events in \( p\overline{p} \) collisions \( \sqrt{s}=1.96 \) TeV., Phys. Rev. D 81 (2010) 052012 [arXiv:0912.5104] [INSPIRE].
  21. [21]
    ATLAS collaboration, Measurement of hard double-parton interactions in W (→ ℓν) + 2 jet events at \( \sqrt{s}=7 \) TeV with the ATLAS detector, New J. Phys. 15 (2013) 033038 [arXiv:1301.6872] [INSPIRE].
  22. [22]
    CMS collaboration, Study of double parton scattering using W + 2-jet events in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2014) 032 [arXiv:1312.5729] [INSPIRE].
  23. [23]
    M. Rinaldi, S. Scopetta, M. Traini and V. Vento, Double parton scattering: a study of the effective cross section within a light-front quark model, Phys. Lett. B 752 (2016) 40 [arXiv:1506.05742] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Faccioli, M. Traini and V. Vento, Polarized parton distributions and light front dynamics, Nucl. Phys. A 656 (1999) 400 [hep-ph/9808201] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto and L. Tiator, A three body force model for the baryon spectrum, Phys. Lett. B 364 (1995) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Pasquini, M. Traini and S. Boffi, Spin force dependence of the parton distributions: the ratio F 2n(x, Q 2)/F 2p(x, Q 2), Phys. Rev. D 65 (2002) 074028 [hep-ph/0201017] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Traini, Charge symmetry violation: a NNLO study of partonic observables, Phys. Lett. B 707 (2012) 523 [arXiv:1110.3594] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Traini, Next-to-next-to-leading-order nucleon parton distributions from a light-cone quark model dressed with its virtual meson cloud, Phys. Rev. D 89 (2014) 034021 [arXiv:1309.5814] [INSPIRE].ADSGoogle Scholar
  29. [29]
    F. Cano, P. Faccioli and M. Traini, Probing relativistic spin effects in the nucleon by means of Drell-Yan processes, Phys. Rev. D 62 (2000) 094018 [hep-ph/9902345] [INSPIRE].ADSGoogle Scholar
  30. [30]
    F. Cano, P. Faccioli, S. Scopetta and M. Traini, Orbital angular momentum parton distributions in light front dynamics, Phys. Rev. D 62 (2000) 054023 [hep-ph/0002113] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Boffi, B. Pasquini and M. Traini, Linking generalized parton distributions to constituent quark models, Nucl. Phys. B 649 (2003) 243 [hep-ph/0207340] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    S. Boffi, B. Pasquini and M. Traini, Helicity dependent generalized parton distributions in constituent quark models, Nucl. Phys. B 680 (2004) 147 [hep-ph/0311016] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    B. Pasquini, M. Traini and S. Boffi, Nonperturbative versus perturbative effects in generalized parton distributions, Phys. Rev. D 71 (2005) 034022 [hep-ph/0407228] [INSPIRE].ADSGoogle Scholar
  34. [34]
    B. Blok, Yu. Dokshitser, L. Frankfurt and M. Strikman, pQCD physics of multiparton interactions, Eur. Phys. J. C 72 (2012) 1963 [arXiv:1106.5533] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, Perturbative QCD correlations in multi-parton collisions, Eur. Phys. J. C 74 (2014) 2926 [arXiv:1306.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    H.J. Melosh, Quarks: currents and constituents, Phys. Rev. D 9 (1974) 1095 [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Bakamjian and L.H. Thomas, Relativistic particle dynamics. 2, Phys. Rev. 92 (1953) 1300 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    M. Traini, A. Mair, A. Zambarda and V. Vento, Constituent quarks and parton distributions, Nucl. Phys. A 614 (1997) 472 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Diehl, T. Kasemets and S. Keane, Correlations in double parton distributions: effects of evolution, JHEP 05 (2014) 118 [arXiv:1401.1233] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Diehl, Generalized parton distributions, Phys. Rept. 388 (2003) 41 [hep-ph/0307382] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.R. Gaunt, R. Maciula and A. Szczurek, Conventional versus single-ladder-splitting contributions to double parton scattering production of two quarkonia, two Higgs bosons and \( c\overline{c}c\overline{c} \), Phys. Rev. D 90 (2014) 054017 [arXiv:1407.5821] [INSPIRE].ADSGoogle Scholar
  44. [44]
    B. Pasquini and S. Boffi, Virtual meson cloud of the nucleon and generalized parton distributions, Phys. Rev. D 73 (2006) 094001 [hep-ph/0601177] [INSPIRE].ADSGoogle Scholar
  45. [45]
    V.L. Korotkikh and A.M. Snigirev, Double parton correlations versus factorized distributions, Phys. Lett. B 594 (2004) 171 [hep-ph/0404155] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Diehl and T. Kasemets, Positivity bounds on double parton distributions, JHEP 05 (2013) 150 [arXiv:1303.0842] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    R. Kirschner, Generalized Lipatov-Altarelli-Parisi equations and jet calculus rules, Phys. Lett. B 84 (1979) 266 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    V.P. Shelest, A.M. Snigirev and G.M. Zinovev, The multiparton distribution equations in QCD, Phys. Lett. B 113 (1982) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Gaunt, Double parton scattering in proton-proton collisions, Ph.D. thesis, University of Cambridge, Cambridge U.K. (2012).Google Scholar
  50. [50]
    F.A. Ceccopieri, An update on the evolution of double parton distributions, Phys. Lett. B 697 (2011) 482 [arXiv:1011.6586] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F.A. Ceccopieri, A second update on double parton distributions, Phys. Lett. B 734 (2014) 79 [arXiv:1403.2167] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Diehl, J.R. Gaunt, D. Ostermeier, P. Plößl and A. Schäfer, Cancellation of Glauber gluon exchange in the double Drell-Yan process, JHEP 01 (2016) 076 [arXiv:1510.08696] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Diehl, Multiple hard scattering and parton correlations in the proton, Int. J. Mod. Phys. Conf. Ser. 37 (2015) 1560043 [arXiv:1411.0847] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    A.M. Snigirev, N.A. Snigireva and G.M. Zinovjev, Perturbative and nonperturbative correlations in double parton distributions, Phys. Rev. D 90 (2014) 014015 [arXiv:1403.6947] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Matteo Rinaldi
    • 1
  • Sergio Scopetta
    • 1
  • Marco Traini
    • 2
    • 3
  • Vicente Vento
    • 4
  1. 1.Dipartimento di Fisica e Geologia, Università degli Studi di Perugia and Istituto Nazionale di Fisica Nucleare, Sezione di PerugiaPerugiaItaly
  2. 2.Institut de Physique Théorique CEA-SaclayGif-sur-YvetteFrance
  3. 3.INFN — TIFPA, Dipartimento di FisicaUniversità degli Studi di TrentoPovo (Trento)Italy
  4. 4.Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular, Consejo Superior de Investigaciones CientíficasValènciaSpain

Personalised recommendations