Nonlocal \( \mathcal{N}=1 \) supersymmetry

  • Tetsuji Kimura
  • Anupam Mazumdar
  • Toshifumi Noumi
  • Masahide Yamaguchi
Open Access
Regular Article - Theoretical Physics


We construct \( \mathcal{N}=1 \) supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of Kähler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.


Supersymmetric Effective Theories Supersymmetry Breaking 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Yu. A. Golfand and E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452] [INSPIRE].
  2. [2]
    R. Haag, J.T. Lopuszanski and M. Sohnius, All possible generators of supersymmetries of the S matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].
  4. [4]
    M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres (in French), Mem. Acad. St. Petersbourg 6 (1850) 385 [INSPIRE].Google Scholar
  5. [5]
    R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].
  6. [6]
    R.P. Woodard, Ostrogradskys theorem on Hamiltonian instability, Scholarpedia 10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P (X, ϕ) and the ghost condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  9. [9]
    F.S. Gama, M. Gomes, J.R. Nascimento, A. Yu. Petrov and A.J. da Silva, On the higher-derivative supersymmetric gauge theory, Phys. Rev. D 84 (2011) 045001 [arXiv:1101.0724] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Nitta and S. Sasaki, Higher derivative corrections to manifestly supersymmetric nonlinear realizations, Phys. Rev. D 90 (2014) 105002 [arXiv:1408.4210] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Addazi and G. Esposito, Nonlocal quantum field theory without acausality and nonunitarity at quantum level: is SUSY the key?, Int. J. Mod. Phys. A 30 (2015) 1550103 [arXiv:1502.01471] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S. Aoki and Y. Yamada, Impacts of supersymmetric higher derivative terms on inflation models in supergravity, JCAP 07 (2015) 020 [arXiv:1504.07023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Pais and G.E. Uhlenbeck, On field theories with nonlocalized action, Phys. Rev. 79 (1950) 145 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    E. Tomboulis, Renormalizability and asymptotic freedom in quantum gravity, Phys. Lett. B 97 (1980) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    E.T. Tomboulis, Renormalization and asymptotic freedom in quantum gravity, in Quantum theory of gravity, S.M. Christensen ed., (1983), pg. 251 [INSPIRE].
  18. [18]
    J.W. Moffat, Finite nonlocal gauge field theory, Phys. Rev. D 41 (1990) 1177 [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    E.T. Tomboulis, Superrenormalizable gauge and gravitational theories, hep-th/9702146 [INSPIRE].
  20. [20]
    T. Biswas, A. Mazumdar and W. Siegel, Bouncing universes in string-inspired gravity, JCAP 03 (2006) 009 [hep-th/0508194] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: the initial value problem, JHEP 02 (2008) 008 [arXiv:0709.3968] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: variable coefficient equations, JHEP 12 (2008) 022 [arXiv:0809.4513] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (2012) 044005 [arXiv:1107.2403] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Biswas and N. Okada, Towards LHC physics with nonlocal Standard Model, Nucl. Phys. B 898 (2015) 113 [arXiv:1407.3331] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S. Talaganis, T. Biswas and A. Mazumdar, Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity, Class. Quant. Grav. 32 (2015) 215017 [arXiv:1412.3467] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (2015) 125037 [arXiv:1507.00981] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    T. Biswas, A.S. Koshelev and A. Mazumdar, Consistent higher derivative gravitational theories with stable de Sitter and anti-de Sitter backgrounds, arXiv:1606.01250 [INSPIRE].
  29. [29]
    T. Biswas, A.S. Koshelev and A. Mazumdar, Gravitational theories with stable (anti-)de Sitter backgrounds, Fundam. Theor. Phys. 183 (2016) 97 [arXiv:1602.08475] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    S. Talaganis and A. Mazumdar, High-energy scatterings in infinite-derivative field theory and ghost-free gravity, Class. Quant. Grav. 33 (2016) 145005 [arXiv:1603.03440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    R. Pius and A. Sen, Cutkosky rules for superstring field theory, arXiv:1604.01783 [INSPIRE].
  32. [32]
    K. Ohmori, A review on tachyon condensation in open string field theories, hep-th/0102085 [INSPIRE].
  33. [33]
    W. Taylor and B. Zwiebach, D-branes, tachyons and string field theory, hep-th/0311017 [INSPIRE].
  34. [34]
    Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys. 128 (2012) 1001 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons, JHEP 10 (2002) 034 [hep-th/0207107] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P.G.O. Freund and M. Olson, Non-Archimedean strings, Phys. Lett. B 199 (1987) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    G. Calcagni and L. Modesto, Nonlocality in string theory, J. Phys. A 47 (2014) 355402 [arXiv:1310.4957] [INSPIRE].MathSciNetMATHGoogle Scholar
  38. [38]
    P.G.O. Freund and E. Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987) 191 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Non-Archimedean string dynamics, Nucl. Phys. B 302 (1988) 365 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    D. Ghoshal and A. Sen, Tachyon condensation and brane descent relations in p-adic string theory, Nucl. Phys. B 584 (2000) 300 [hep-th/0003278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    J.A. Minahan, Quantum corrections in p-adic string theory, hep-th/0105312 [INSPIRE].
  42. [42]
    S. Giaccari and L. Modesto, Classical and quantum nonlocal supergravity, arXiv:1605.03906 [INSPIRE].
  43. [43]
    J. Wess and J. Bagger, SUSY and supergravity, Princeton Univ. Pr., Princeton U.S.A. (1992).Google Scholar
  44. [44]
    J. Edholm, A.S. Koshelev and A. Mazumdar, Universality of testing ghost-free gravity, arXiv:1604.01989 [INSPIRE].
  45. [45]
    I. Ellwood and W. Taylor, Open string field theory without open strings, Phys. Lett. B 512 (2001) 181 [hep-th/0103085] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    T. Kimura, A. Mazumdar, T. Noumi and M. Yamaguchi, in preparation.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Tetsuji Kimura
    • 1
    • 2
  • Anupam Mazumdar
    • 3
    • 4
  • Toshifumi Noumi
    • 5
    • 6
  • Masahide Yamaguchi
    • 2
  1. 1.Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan
  2. 2.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  3. 3.Consortium for Fundamental Physics, Physics DepartmentLancaster UniversityLancasterU.K.
  4. 4.Kapteyn Astronomical InstituteUniversity of GroningenGroningenThe Netherlands
  5. 5.Institute for Advanced StudyHong Kong University of Science and TechnologyClear Water BayHong Kong
  6. 6.Department of PhysicsKobe UniversityKobeJapan

Personalised recommendations