Quasi-Dirac neutrinos at the LHC

  • G. Anamiati
  • M. Hirsch
  • E. Nardi
Open Access
Regular Article - Theoretical Physics


Lepton number violation is searched for at the LHC using same-sign leptons plus jets. The standard lore is that the ratio of same-sign lepton to opposite-sign lepton events, R ll , is equal to R ll = 1 (R ll = 0) for Majorana (Dirac) neutrinos. We clarify under which conditions the ratio R ll can assume values different from 0 and 1, and we argue that the precise value 0 < R ll < 1 is controlled by the mass splitting versus the width of the quasi-Dirac resonances. A measurement of R ll = 0, 1 would then contain valuable information about the origin of neutrino masses. We consider as an example the inverse seesaw mechanism in a left-right symmetric scenario, which is phenomenologically particularly interesting since all the heavy states in the high energy completion of the model could be within experimental reach. A prediction of this scenario is a correlation between the values of R ll and the ratio between the rates for heavy neutrino decays into standard model gauge bosons, and into three body final states ljj mediated by off-shell W R exchange.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F.T. Avignone, III, S.R. Elliott and J. Engel, Double beta decay, Majorana neutrinos and neutrino mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F.F. Deppisch, M. Hirsch and H. Pas, Neutrinoless double beta decay and physics beyond the Standard Model, J. Phys. G 39 (2012) 124007 [arXiv:1208.0727] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  5. [5]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  6. [6]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.C. Helo, M. Hirsch, H. Päs and S.G. Kovalenko, Short-range mechanisms of neutrinoless double beta decay at the LHC, Phys. Rev. D 88 (2013) 073011 [arXiv:1307.4849] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].
  10. [10]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C.S. Fong, E. Nardi and A. Riotto, Leptogenesis in the universe, Adv. High Energy Phys. 2012 (2012) 158303 [arXiv:1301.3062] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  13. [13]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
  14. [14]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
  15. [15]
    S. Bray, J.S. Lee and A. Pilaftsis, Resonant CP-violation due to heavy neutrinos at the LHC, Nucl. Phys. B 786 (2007) 95 [hep-ph/0702294] [INSPIRE].
  16. [16]
    J. Kersten and A. Yu. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar
  17. [17]
    ATLAS collaboration, Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2056 [arXiv:1203.5420] [INSPIRE].
  18. [18]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  19. [19]
    CMS collaboration, Search for a heavy neutrino and right-handed W of the left-right symmetric model in pp collisions at 8 TeV, CMS-PAS-EXO-12-017, CERN, Geneva Switzerland (2012).
  20. [20]
    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].
  21. [21]
    F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Signal of right-handed charged gauge bosons at the LHC?, Phys. Rev. D 90 (2014) 053014 [arXiv:1407.5384] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Heikinheimo, M. Raidal and C. Spethmann, Testing right-handed currents at the LHC, Eur. Phys. J. C 74 (2014) 3107 [arXiv:1407.6908] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    B.A. Dobrescu and Z. Liu, W boson near 2 TeV: predictions for run 2 of the LHC, Phys. Rev. Lett. 115 (2015) 211802 [arXiv:1506.06736] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and J. Tattersall, Symmetry restored in dibosons at the LHC?, JHEP 10 (2015) 182 [arXiv:1507.00013] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Cheung, W.-Y. Keung, P.-Y. Tseng and T.-C. Yuan, Interpretations of the ATLAS diboson anomaly, Phys. Lett. B 751 (2015) 188 [arXiv:1506.06064] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F.F. Deppisch et al., Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model, Phys. Rev. D 93 (2016) 013011 [arXiv:1508.05940] [INSPIRE].ADSGoogle Scholar
  27. [27]
    B. Allanach, S. Biswas, S. Mondal and M. Mitra, Explaining a CMS eejj excess with \( \mathrm{\mathcal{R}} \) -parity violating supersymmetry and implications for neutrinoless double beta decay, Phys. Rev. D 91 (2015) 011702 [arXiv:1408.5439] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  32. [32]
    Y. Nir, CP violation, Conf. Proc. C 9207131 (1992) 81 [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.AHEP Group, Instituto de Física Corpuscular — C.S.I.C./Universitat de València, Edificio Institutos de Investigacion, Parc Cientific de PaternaValènciaSpain
  2. 2.INFN, Laboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations