Journal of High Energy Physics

, 2015:137 | Cite as

Holographic oddballs

  • L. Bellantuono
  • P. Colangelo
  • F. Giannuzzi
Open Access
Regular Article - Theoretical Physics


The spectrum of the glueball with J P C = 0−− is computed using different bottom-up holographic models of QCD. The results indicate a lowest-lying state lighter than in the determination by other methods, with mass m ≃ 2.8 GeV. The in-medium properties of this gluonium are investigated, and stability against thermal and density effects is compared to other hadronic systems. Production and decay modes are identified, useful for searching the J P C = 0−− glueball.


QCD Phenomenology Strings and branes phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.L. Jaffe and K. Johnson, Unconventional states of confined quarks and gluons, Phys. Lett. B 60 (1976) 201 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    W. Ochs, The status of glueballs, J. Phys. G 40 (2013) 043001 [arXiv:1301.5183] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    H.-Y. Cheng, C.-K. Chua and K.-F. Liu, Revisiting scalar glueballs, arXiv:1503.06827 [INSPIRE].
  4. [4]
    M. Chanowitz, Chiral suppression of scalar glueball decay, Phys. Rev. Lett. 95 (2005) 172001 [hep-ph/0506125] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    N. Isgur and J.E. Paton, A flux tube model for hadrons in QCD, Phys. Rev. D 31 (1985) 2910 [INSPIRE].ADSGoogle Scholar
  6. [6]
    E. Gregory et al., Towards the glueball spectrum from unquenched lattice QCD, JHEP 10 (2012) 170 [arXiv:1208.1858] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    C.-F. Qiao and L. Tang, Finding the 0−− glueball, Phys. Rev. Lett. 113 (2014) 221601 [arXiv:1408.3995] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    S. Malde et al., First determination of the CP content of Dπ + π π + π and updated determination of the CP contents of Dπ + π π 0 and DK + K π 0, Phys. Lett. B 747 (2015) 9 [arXiv:1504.05878] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MATHMathSciNetADSGoogle Scholar
  11. [11]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge U.K. (2015).MATHCrossRefGoogle Scholar
  13. [13]
    D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A. Hashimoto and Y. Oz, Aspects of QCD dynamics from string theory, Nucl. Phys. B 548 (1999) 167 [hep-th/9809106] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    N.R. Constable and R.C. Myers, Spin two glueballs, positive energy theorems and the AdS/CFT correspondence, JHEP 10 (1999) 037 [hep-th/9908175] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    R.C. Brower, S.D. Mathur and C.-I. Tan, Glueball spectrum for QCD from AdS supergravity duality, Nucl. Phys. B 587 (2000) 249 [hep-th/0003115] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    D. Elander, A.F. Faedo, C. Hoyos, D. Mateos and M. Piai, Multiscale confining dynamics from holographic RG flows, JHEP 05 (2014) 003 [arXiv:1312.7160] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    K. Hashimoto, C.-I. Tan and S. Terashima, Glueball decay in holographic QCD, Phys. Rev. D 77 (2008) 086001 [arXiv:0709.2208] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Brünner, D. Parganlija and A. Rebhan, Glueball decay rates in the Witten-Sakai-Sugimoto model, Phys. Rev. D 91 (2015) 106002 [arXiv:1501.07906] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD, Phys. Rev. D 78 (2008) 055009 [arXiv:0807.1054] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch and J. Erlich, Light-front holographic QCD and emerging confinement, Phys. Rept. 584 (2015) 1 [arXiv:1407.8131] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    L. Bellantuono, P. Colangelo and F. Giannuzzi, Exotic J P C = 1−+ mesons in a holographic model of QCD, Eur. Phys. J. C 74 (2014) 2830 [arXiv:1402.5308] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    H. Boschi-Filho and N.R.F. Braga, QCD/string holographic mapping and glueball mass spectrum, Eur. Phys. J. C 32 (2004) 529 [hep-th/0209080] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri, On the light glueball spectrum in a holographic description of QCD, Phys. Lett. B 652 (2007) 73 [hep-ph/0703316] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    H. Forkel, Holographic glueball structure, Phys. Rev. D 78 (2008) 025001 [arXiv:0711.1179] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri, Investigating AdS/QCD duality through scalar glueball correlators, Int. J. Mod. Phys. A 24 (2009) 4177 [arXiv:0711.4747] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    D. Li, S. He, M. Huang and Q.-S. Yan, Thermodynamics of deformed AdS 5 model with a positive/negative quadratic correction in graviton-dilaton system, JHEP 09 (2011) 041 [arXiv:1103.5389] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    D. Li and M. Huang, Dynamical holographic QCD model for glueball and light meson spectra, JHEP 11 (2013) 088 [arXiv:1303.6929] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    P. Colangelo, F. Giannuzzi and S. Nicotri, Holographic approach to finite temperature QCD: the case of scalar glueballs and scalar mesons, Phys. Rev. D 80 (2009) 094019 [arXiv:0909.1534] [INSPIRE].ADSGoogle Scholar
  34. [34]
    P. Colangelo, F. Giannuzzi and S. Nicotri, In-medium hadronic spectral functions through the soft-wall holographic model of QCD, JHEP 05 (2012) 076 [arXiv:1201.1564] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    C.P. Herzog, A holographic prediction of the deconfinement temperature, Phys. Rev. Lett. 98 (2007) 091601 [hep-th/0608151] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    B.-H. Lee, C. Park and S.-J. Sin, A dual geometry of the hadron in dense matter, JHEP 07 (2009) 087 [arXiv:0905.2800] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in N =4 Yang-Mills theory,Phys. Rev. D 74 (2006) 045025 [hep-ph/0602044] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Fujita, K. Fukushima, T. Misumi and M. Murata, Finite-temperature spectral function of the vector mesons in an AdS/QCD model, Phys. Rev. D 80 (2009) 035001 [arXiv:0903.2316] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Edalati, J.I. Jottar and R.G. Leigh, Transport coefficients at zero temperature from extremal black holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    C. Park, D.-Y. Gwak, B.-H. Lee, Y. Ko and S. Shin, The soft wall model in the hadronic medium, Phys. Rev. D 84 (2011) 046007 [arXiv:1104.4182] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Università di BariBariItaly
  2. 2.INFN — Sezione di BariBariItaly

Personalised recommendations