GR uniqueness and deformations

Open Access
Regular Article - Theoretical Physics


In the metric formulation gravitons are described with the parity symmetric S + 2  ⊗ S 2 representation of Lorentz group. General Relativity is then the unique theory of interacting gravitons with second order field equations. We show that if a chiral S + 3  ⊗ S representation is used instead, the uniqueness is lost, and there is an infinite-parametric family of theories of interacting gravitons with second order field equations. We use the language of graviton scattering amplitudes, and show how the uniqueness of GR is avoided using simple dimensional analysis. The resulting distinct from GR gravity theories are all parity asymmetric, but share the GR MHV amplitudes. They have new all same helicity graviton scattering amplitudes at every graviton order. The amplitudes with at least one graviton of opposite helicity continue to be determinable by the BCFW recursion.


Scattering Amplitudes Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Capovilla, T. Jacobson and J. Dell, General relativity without the metric, Phys. Rev. Lett. 63 (1989) 2325 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    I. Bengtsson, The cosmological constants, Phys. Lett. B 254 (1991) 55 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    K. Krasnov, Renormalizable non-metric quantum gravity?, hep-th/0611182 [INSPIRE].
  4. [4]
    K. Krasnov, On deformations of Ashtekars constraint algebra, Phys. Rev. Lett. 100 (2008) 081102 [arXiv:0711.0090] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976) 31 [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  7. [7]
    G. Delfino, K. Krasnov and C. Scarinci, Pure connection formalism for gravity: linearized theory, JHEP 03 (2015) 118 [arXiv:1205.7045] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    K. Krasnov, Gravitons and a complex of differential operators, Mod. Phys. Lett. A 30 (2015) 1540001 [arXiv:1406.7159] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    G. Delfino, K. Krasnov and C. Scarinci, Pure connection formalism for gravity: Feynman rules and the graviton-graviton scattering, JHEP 03 (2015) 119 [arXiv:1210.6215] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, Gravitational Born amplitudes and kinematical constraints, Phys. Rev. D 12 (1975) 397 [INSPIRE].ADSGoogle Scholar
  11. [11]
    N. Arkani-Hamed, The amplituhedron, scattering amplitudes, and the wavefunction of the Universe, talk at New geometric structures in scattering amplitudes, September 22-25, Oxford U.K. (2014).
  12. [12]
    D.A. McGady and L. Rodina, Higher-spin massless S-matrices in four-dimensions, Phys. Rev. D 90 (2014) 084048 [arXiv:1311.2938] [INSPIRE].ADSGoogle Scholar
  13. [13]
    K. Zhou and C. Qiao, General tree-level amplitudes by factorization limits, Eur. Phys. J. C 75 (2015) 163 [arXiv:1410.5042] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    M. Cofano, C.-H. Fu and K. Krasnov, Deformations of Yang-Mills theory, Phys. Rev. D 92 (2015) 065012 [arXiv:1501.00848] [INSPIRE].Google Scholar
  15. [15]
    N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    K. Groh, K. Krasnov and C.F. Steinwachs, Pure connection gravity at one loop: Instanton background, JHEP 07 (2013) 187 [arXiv:1304.6946] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    K. Krasnov, Pure connection action principle for general relativity, Phys. Rev. Lett. 106 (2011) 251103 [arXiv:1103.4498] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    K. Krasnov, Gravity as a diffeomorphism invariant gauge theory, Phys. Rev. D 84 (2011) 024034 [arXiv:1101.4788] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Krasnov, A gauge theoretic approach to gravity, Proc. Roy. Soc. Lond. A 468 (2012) 2129 [arXiv:1202.6183] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    J. Fine, K. Krasnov and D. Panov, A gauge theoretic approach to Einstein 4-manifolds, New York J. Math. 20 (2014) 293 [arXiv:1312.2831] [INSPIRE].MATHMathSciNetGoogle Scholar
  22. [22]
    K. Krasnov, Effective metric Lagrangians from an underlying theory with two propagating degrees of freedom, Phys. Rev. D 81 (2010) 084026 [arXiv:0911.4903] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    K. Krasnov and Y. Shtanov, Non-metric gravity. II. Spherically symmetric solution, missing mass and redshifts of quasars, Class. Quant. Grav. 25 (2008) 025002 [arXiv:0705.2047] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    K. Krasnov, One-loop β-function for an infinite-parameter family of gauge theories, JHEP 03 (2015) 030 [arXiv:1501.00849] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamU.K.

Personalised recommendations