Chiral drag force

Open Access
Regular Article - Theoretical Physics


We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and antiquarks in that event.


Quark-Gluon Plasma Holography and quark-gluon plasmas Anomalies in Field and String Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Y.L. Dokshitzer and D.E. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B 519 (2001) 199 [hep-ph/0106202] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MATHMathSciNetADSGoogle Scholar
  4. [4]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    M. Lekaveckas and K. Rajagopal, Effects of fluid velocity gradients on heavy quark energy loss, JHEP 02 (2014) 068 [arXiv:1311.5577] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].ADSGoogle Scholar
  14. [14]
    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T. Kalaydzhyan, E.V. Luschevskaya and M.I. Polikarpov, Magnetic-field-induced insulator-conductor transition in SU(2) quenched lattice gauge theory, Phys. Rev. Lett. 105 (2010) 132001 [arXiv:1003.2180] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    A.V. Sadofyev, V.I. Shevchenko and V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach, Phys. Rev. D 83 (2011) 105025 [arXiv:1012.1958] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D.E. Kharzeev and H.-U. Yee, Chiral magnetic wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [INSPIRE].ADSGoogle Scholar
  22. [22]
    I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in Holography, JHEP 05 (2011) 081 [arXiv:1102.4577] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011) 045025 [arXiv:1105.6360] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Hoyos, T. Nishioka and A. O’Bannon, A chiral magnetic effect from AdS/CFT with flavor, JHEP 10 (2011) 084 [arXiv:1106.4030] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    V.P. Nair, R. Ray and S. Roy, Fluids, anomalies and the chiral magnetic effect: a group-theoretic formulation, Phys. Rev. D 86 (2012) 025012 [arXiv:1112.4022] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Chapman, Y. Neiman and Y. Oz, Fluid/gravity correspondence, local Wald entropy current and gravitational anomaly, JHEP 07 (2012) 128 [arXiv:1202.2469] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].ADSGoogle Scholar
  31. [31]
    V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov, Chiral vortical effect in superfluid, Phys. Rev. D 86 (2012) 025021 [arXiv:1203.6312] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Eling, A. Meyer and Y. Oz, Local entropy current in higher curvature gravity and rindler hydrodynamics, JHEP 08 (2012) 088 [arXiv:1205.4249] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    M.A. Stephanov and Y. Yin, Chiral kinetic theory, Phys. Rev. Lett. 109 (2012) 162001 [arXiv:1207.0747] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    T. Kalaydzhyan, Chiral superfluidity of the quark-gluon plasma, Nucl. Phys. A 913 (2013) 243 [arXiv:1208.0012] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    V.I. Zakharov, Chiral magnetic effect in hydrodynamic approximation, arXiv:1210.2186 [INSPIRE].
  36. [36]
    D.T. Son and N. Yamamoto, Kinetic theory with Berry curvature from quantum field theories, Phys. Rev. D 87 (2013) 085016 [arXiv:1210.8158] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.-W. Chen, S. Pu, Q. Wang and X.-N. Wang, Berry curvature and four-dimensional monopoles in the relativistic chiral kinetic equation, Phys. Rev. Lett. 110 (2013) 262301 [arXiv:1210.8312] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    Y. Akamatsu and N. Yamamoto, Chiral plasma instabilities, Phys. Rev. Lett. 111 (2013) 052002 [arXiv:1302.2125] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    E. Megias and F. Pena-Benitez, Holographic gravitational anomaly in first and second order hydrodynamics, JHEP 05 (2013) 115 [arXiv:1304.5529] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    Z.V. Khaidukov, V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov, On magnetostatics of chiral media, arXiv:1307.0138 [INSPIRE].
  41. [41]
    V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov, Anomaly and long-range forces, arXiv:1312.0895 [INSPIRE].
  42. [42]
    P.V. Buividovich, Anomalous transport with overlap fermions, Nucl. Phys. A 925 (2014) 218 [arXiv:1312.1843] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    A. Avdoshkin, V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov, On consistency of hydrodynamic approximation for chiral media, arXiv:1402.3587 [INSPIRE].
  44. [44]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    PHENIX collaboration, A. Adare et al., Energy loss and flow of heavy quarks in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 98 (2007) 172301 [nucl-ex/0611018] [INSPIRE].
  50. [50]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  51. [51]
    C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries, JHEP 09 (2006) 032 [hep-th/0605191] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    E. Caceres and A. Guijosa, Drag force in charged N = 4 SYM plasma, JHEP 11 (2006) 077 [hep-th/0605235] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  53. [53]
    E. Caceres and A. Guijosa, On drag forces and jet quenching in strongly coupled plasmas, JHEP 12 (2006) 068 [hep-th/0606134] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    T. Matsuo, D. Tomino and W.-Y. Wen, Drag force in SYM plasma with B field from AdS/CFT, JHEP 10 (2006) 055 [hep-th/0607178] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  55. [55]
    E. Nakano, S. Teraguchi and W.-Y. Wen, Drag force, jet quenching and AdS/QCD, Phys. Rev. D 75 (2007) 085016 [hep-ph/0608274] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Talavera, Drag force in a string model dual to large-N QCD, JHEP 01 (2007) 086 [hep-th/0610179] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  57. [57]
    S.S. Gubser, Comparing the drag force on heavy quarks in N = 4 super-Yang-Mills theory and QCD, Phys. Rev. D 76 (2007) 126003 [hep-th/0611272] [INSPIRE].ADSGoogle Scholar
  58. [58]
    G. Bertoldi, F. Bigazzi, A.L. Cotrone and J.D. Edelstein, Holography and unquenched quark-gluon plasmas, Phys. Rev. D 76 (2007) 065007 [hep-th/0702225] [INSPIRE].ADSGoogle Scholar
  59. [59]
    H. Liu, K. Rajagopal and Y. Shi, Robustness and infrared sensitivity of various observables in the application of AdS/CFT to heavy ion collisions, JHEP 08 (2008) 048 [arXiv:0803.3214] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  60. [60]
    U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal transport and drag force in improved holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    C. Hoyos-Badajoz, Drag and jet quenching of heavy quarks in a strongly coupled N = 2* plasma, JHEP 09 (2009) 068 [arXiv:0907.5036] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    F. Bigazzi, A.L. Cotrone, J. Mas, A. Paredes, A.V. Ramallo and J. Tarrio, D3-D7 quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    A. Nata Atmaja and K. Schalm, Anisotropic drag force from 4D Kerr-AdS black holes, JHEP 04 (2011) 070 [arXiv:1012.3800] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  64. [64]
    M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled anisotropic plasma, JHEP 08 (2012) 100 [arXiv:1202.3696] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    K.B. Fadafan and H. Soltanpanahi, Energy loss in a strongly coupled anisotropic plasma, JHEP 10 (2012) 085 [arXiv:1206.2271] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 [arXiv:1202.4436] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    P.M. Chesler, M. Lekaveckas and K. Rajagopal, Heavy quark energy loss far from equilibrium in a strongly coupled collision, JHEP 10 (2013) 013 [arXiv:1306.0564] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  69. [69]
    K.A. Mamo and H.-U. Yee, Gradient correction to photon emission rate at strong coupling, Phys. Rev. D 91 (2015) 086011 [arXiv:1409.7674] [INSPIRE].ADSGoogle Scholar
  70. [70]
    P.V. Buividovich, Spontaneous chiral symmetry breaking and the chiral magnetic effect for interacting Dirac fermions with chiral imbalance, Phys. Rev. D 90 (2014) 125025 [arXiv:1408.4573] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Golkar and D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient, JHEP 02 (2015) 169 [arXiv:1207.5806] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  72. [72]
    K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  73. [73]
    V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov and M.V. Ulybyshev, Numerical evidence of the axial magnetic effect, Phys. Rev. D 88 (2013) 071501 [arXiv:1303.6266] [INSPIRE].ADSGoogle Scholar
  74. [74]
    V. Braguta et al., Temperature dependence of the axial magnetic effect in two-color quenched QCD, Phys. Rev. D 89 (2014) 074510 [arXiv:1401.8095] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Stephanov and H-U. Yee, private communication.Google Scholar
  76. [76]
    R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE].
  77. [77]
    E. Megias, K. Landsteiner and F. Pena-Benitez, Fluid/gravity correspondence and holographic mixed gauge-gravitational anomaly, Acta Phys. Polon. Supp. 6 (2013) 45 [INSPIRE].CrossRefGoogle Scholar
  78. [78]
    Q. Li et al., Observation of the chiral magnetic effect in ZrTe5, arXiv:1412.6543 [INSPIRE].
  79. [79]
    STAR collaboration, L. Adamczyk et al., Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC, Phys. Rev. Lett. 113 (2014) 052302 [arXiv:1404.1433] [INSPIRE].
  80. [80]
    STAR collaboration, B.I. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].
  81. [81]
    STAR collaboration, B.I. Abelev et al., Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81 (2010) 054908 [arXiv:0909.1717] [INSPIRE].
  82. [82]
    ALICE collaboration, Charge separation relative to the reaction plane in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 110 (2013) 012301 [arXiv:1207.0900] [INSPIRE].
  83. [83]
    STAR collaboration, L. Adamczyk et al., Fluctuations of charge separation perpendicular to the event plane and local parity violation in \( \sqrt{s_{NN}}=200 \) GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 88 (2013) 064911 [arXiv:1302.3802] [INSPIRE].
  84. [84]
    Y. Hirono, T. Hirano and D.E. Kharzeev, The chiral magnetic effect in heavy-ion collisions from event-by-event anomalous hydrodynamics, arXiv:1412.0311 [INSPIRE].
  85. [85]
    K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions, Adv. High Energy Phys. 2013 (2013) 490495 [arXiv:1301.0099] [INSPIRE].
  86. [86]
    L. McLerran and V. Skokov, Comments about the electromagnetic field in heavy-ion collisions, Nucl. Phys. A 929 (2014) 184 [arXiv:1305.0774] [INSPIRE].CrossRefADSGoogle Scholar
  87. [87]
    K. Tuchin, Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions, Phys. Rev. C 88 (2013) 024911 [arXiv:1305.5806] [INSPIRE].ADSGoogle Scholar
  88. [88]
    U. Gürsoy, D. Kharzeev and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev. C 89 (2014) 054905 [arXiv:1401.3805] [INSPIRE].ADSGoogle Scholar
  89. [89]
    STAR collaboration, F. Zhao, Λ(K S0) − h ± and Λ-p azimuthal correlations with respect to event plane and search for chiral magnetic and vortical effects, Nucl. Phys. A 931 (2014) 746 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.ITEPMoscowRussia

Personalised recommendations