# Chiral drag force

- 132 Downloads
- 16 Citations

## Abstract

We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and antiquarks in that event.

## Keywords

Quark-Gluon Plasma Holography and quark-gluon plasmas Anomalies in Field and String Theories## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]Y.L. Dokshitzer and D.E. Kharzeev,
*Heavy quark colorimetry of QCD matter*,*Phys. Lett.***B 519**(2001) 199 [hep-ph/0106202] [INSPIRE].CrossRefADSGoogle Scholar - [2]J.M. Maldacena,
*The large-N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [*Adv. Theor. Math. Phys.***2**(1998) 231] [hep-th/9711200] [INSPIRE]. - [3]E. Witten,
*Anti-de Sitter space and holography*,*Adv. Theor. Math. Phys.***2**(1998) 253 [hep-th/9802150] [INSPIRE].MATHMathSciNetADSGoogle Scholar - [4]A. Karch and E. Katz,
*Adding flavor to AdS/CFT*,*JHEP***06**(2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [5]C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe,
*Energy loss of a heavy quark moving through N*= 4*supersymmetric Yang-Mills plasma*,*JHEP***07**(2006) 013 [hep-th/0605158] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [6]S.S. Gubser,
*Drag force in AdS/CFT*,*Phys. Rev.***D 74**(2006) 126005 [hep-th/0605182] [INSPIRE].MathSciNetADSGoogle Scholar - [7]J. Casalderrey-Solana and D. Teaney,
*Heavy quark diffusion in strongly coupled N*= 4*Yang-Mills*,*Phys. Rev.***D 74**(2006) 085012 [hep-ph/0605199] [INSPIRE].ADSGoogle Scholar - [8]S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani,
*Nonlinear fluid dynamics from gravity*,*JHEP***02**(2008) 045 [arXiv:0712.2456] [INSPIRE].CrossRefADSGoogle Scholar - [9]J. Erdmenger, M. Haack, M. Kaminski and A. Yarom,
*Fluid dynamics of R-charged black holes*,*JHEP***01**(2009) 055 [arXiv:0809.2488] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [10]N. Banerjee et al.,
*Hydrodynamics from charged black branes*,*JHEP***01**(2011) 094 [arXiv:0809.2596] [INSPIRE].CrossRefADSGoogle Scholar - [11]M. Lekaveckas and K. Rajagopal,
*Effects of fluid velocity gradients on heavy quark energy loss*,*JHEP***02**(2014) 068 [arXiv:1311.5577] [INSPIRE].CrossRefADSGoogle Scholar - [12]D.T. Son and P. Surowka,
*Hydrodynamics with triangle anomalies*,*Phys. Rev. Lett.***103**(2009) 191601 [arXiv:0906.5044] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [13]A. Vilenkin,
*Equilibrium parity violating current in a magnetic field*,*Phys. Rev.***D 22**(1980) 3080 [INSPIRE].ADSGoogle Scholar - [14]D.E. Kharzeev, L.D. McLerran and H.J. Warringa,
*The effects of topological charge change in heavy ion collisions:*‘*Event by event P and CP-violation*’,*Nucl. Phys.***A 803**(2008) 227 [arXiv:0711.0950] [INSPIRE].CrossRefADSGoogle Scholar - [15]K. Fukushima, D.E. Kharzeev and H.J. Warringa,
*The chiral magnetic effect*,*Phys. Rev.***D 78**(2008) 074033 [arXiv:0808.3382] [INSPIRE].ADSGoogle Scholar - [16]P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov,
*Numerical evidence of chiral magnetic effect in lattice gauge theory*,*Phys. Rev.***D 80**(2009) 054503 [arXiv:0907.0494] [INSPIRE].ADSGoogle Scholar - [17]P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T. Kalaydzhyan, E.V. Luschevskaya and M.I. Polikarpov,
*Magnetic-field-induced insulator-conductor transition in*SU(2)*quenched lattice gauge theory*,*Phys. Rev. Lett.***105**(2010) 132001 [arXiv:1003.2180] [INSPIRE].CrossRefADSGoogle Scholar - [18]D.E. Kharzeev and D.T. Son,
*Testing the chiral magnetic and chiral vortical effects in heavy ion collisions*,*Phys. Rev. Lett.***106**(2011) 062301 [arXiv:1010.0038] [INSPIRE].CrossRefADSGoogle Scholar - [19]Y. Neiman and Y. Oz,
*Relativistic hydrodynamics with general anomalous charges*,*JHEP***03**(2011) 023 [arXiv:1011.5107] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [20]A.V. Sadofyev, V.I. Shevchenko and V.I. Zakharov,
*Notes on chiral hydrodynamics within effective theory approach*,*Phys. Rev.***D 83**(2011) 105025 [arXiv:1012.1958] [INSPIRE].ADSGoogle Scholar - [21]D.E. Kharzeev and H.-U. Yee,
*Chiral magnetic wave*,*Phys. Rev.***D 83**(2011) 085007 [arXiv:1012.6026] [INSPIRE].ADSGoogle Scholar - [22]I. Amado, K. Landsteiner and F. Pena-Benitez,
*Anomalous transport coefficients from Kubo formulas in Holography*,*JHEP***05**(2011) 081 [arXiv:1102.4577] [INSPIRE].CrossRefADSGoogle Scholar - [23]K. Landsteiner, E. Megias and F. Pena-Benitez,
*Gravitational anomaly and transport*,*Phys. Rev. Lett.***107**(2011) 021601 [arXiv:1103.5006] [INSPIRE].CrossRefADSGoogle Scholar - [24]D.E. Kharzeev and H.-U. Yee,
*Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations*,*Phys. Rev.***D 84**(2011) 045025 [arXiv:1105.6360] [INSPIRE].ADSGoogle Scholar - [25]C. Hoyos, T. Nishioka and A. O’Bannon,
*A chiral magnetic effect from AdS/CFT with flavor*,*JHEP***10**(2011) 084 [arXiv:1106.4030] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [26]K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez,
*Holographic gravitational anomaly and chiral vortical effect*,*JHEP***09**(2011) 121 [arXiv:1107.0368] [INSPIRE].CrossRefADSGoogle Scholar - [27]V.P. Nair, R. Ray and S. Roy,
*Fluids, anomalies and the chiral magnetic effect: a group-theoretic formulation*,*Phys. Rev.***D 86**(2012) 025012 [arXiv:1112.4022] [INSPIRE].ADSGoogle Scholar - [28]S. Chapman, Y. Neiman and Y. Oz,
*Fluid/gravity correspondence, local Wald entropy current and gravitational anomaly*,*JHEP***07**(2012) 128 [arXiv:1202.2469] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [29]N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma,
*Constraints on fluid dynamics from equilibrium partition functions*,*JHEP***09**(2012) 046 [arXiv:1203.3544] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [30]K. Jensen,
*Triangle anomalies, thermodynamics and hydrodynamics*,*Phys. Rev.***D 85**(2012) 125017 [arXiv:1203.3599] [INSPIRE].ADSGoogle Scholar - [31]V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov,
*Chiral vortical effect in superfluid*,*Phys. Rev.***D 86**(2012) 025021 [arXiv:1203.6312] [INSPIRE].ADSGoogle Scholar - [32]C. Eling, A. Meyer and Y. Oz,
*Local entropy current in higher curvature gravity and rindler hydrodynamics*,*JHEP***08**(2012) 088 [arXiv:1205.4249] [INSPIRE].CrossRefADSGoogle Scholar - [33]M.A. Stephanov and Y. Yin,
*Chiral kinetic theory*,*Phys. Rev. Lett.***109**(2012) 162001 [arXiv:1207.0747] [INSPIRE].CrossRefADSGoogle Scholar - [34]T. Kalaydzhyan,
*Chiral superfluidity of the quark-gluon plasma*,*Nucl. Phys.***A 913**(2013) 243 [arXiv:1208.0012] [INSPIRE].CrossRefADSGoogle Scholar - [35]
- [36]D.T. Son and N. Yamamoto,
*Kinetic theory with Berry curvature from quantum field theories*,*Phys. Rev.***D 87**(2013) 085016 [arXiv:1210.8158] [INSPIRE].ADSGoogle Scholar - [37]J.-W. Chen, S. Pu, Q. Wang and X.-N. Wang,
*Berry curvature and four-dimensional monopoles in the relativistic chiral kinetic equation*,*Phys. Rev. Lett.***110**(2013) 262301 [arXiv:1210.8312] [INSPIRE].CrossRefADSGoogle Scholar - [38]Y. Akamatsu and N. Yamamoto,
*Chiral plasma instabilities*,*Phys. Rev. Lett.***111**(2013) 052002 [arXiv:1302.2125] [INSPIRE].CrossRefADSGoogle Scholar - [39]E. Megias and F. Pena-Benitez,
*Holographic gravitational anomaly in first and second order hydrodynamics*,*JHEP***05**(2013) 115 [arXiv:1304.5529] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [40]Z.V. Khaidukov, V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov,
*On magnetostatics of chiral media*, arXiv:1307.0138 [INSPIRE]. - [41]V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov,
*Anomaly and long-range forces*, arXiv:1312.0895 [INSPIRE]. - [42]P.V. Buividovich,
*Anomalous transport with overlap fermions*,*Nucl. Phys.***A 925**(2014) 218 [arXiv:1312.1843] [INSPIRE].CrossRefADSGoogle Scholar - [43]A. Avdoshkin, V.P. Kirilin, A.V. Sadofyev and V.I. Zakharov,
*On consistency of hydrodynamic approximation for chiral media*, arXiv:1402.3587 [INSPIRE]. - [44]J.S. Bell and R. Jackiw,
*A PCAC puzzle: π*^{0}→*γγ in the σ-model*,*Nuovo Cim.***A 60**(1969) 47 [INSPIRE].CrossRefADSGoogle Scholar - [45]A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers,
*Charged AdS black holes and catastrophic holography*,*Phys. Rev.***D 60**(1999) 064018 [hep-th/9902170] [INSPIRE].MathSciNetADSGoogle Scholar - [46]M. Cvetič and S.S. Gubser,
*Phases of R charged black holes, spinning branes and strongly coupled gauge theories*,*JHEP***04**(1999) 024 [hep-th/9902195] [INSPIRE].CrossRefADSGoogle Scholar - [47]G. Policastro, D.T. Son and A.O. Starinets,
*The shear viscosity of strongly coupled N*= 4*supersymmetric Yang-Mills plasma*,*Phys. Rev. Lett.***87**(2001) 081601 [hep-th/0104066] [INSPIRE].CrossRefADSGoogle Scholar - [48]P. Kovtun, D.T. Son and A.O. Starinets,
*Viscosity in strongly interacting quantum field theories from black hole physics*,*Phys. Rev. Lett.***94**(2005) 111601 [hep-th/0405231] [INSPIRE].CrossRefADSGoogle Scholar - [49]PHENIX collaboration, A. Adare et al.,
*Energy loss and flow of heavy quarks in Au+Au collisions at*\( \sqrt{s_{NN}}=200 \)*GeV*,*Phys. Rev. Lett.***98**(2007) 172301 [nucl-ex/0611018] [INSPIRE]. - [50]J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann,
*Gauge/string duality, hot QCD and heavy ion collisions*, arXiv:1101.0618 [INSPIRE]. - [51]C.P. Herzog,
*Energy loss of heavy quarks from asymptotically AdS geometries*,*JHEP***09**(2006) 032 [hep-th/0605191] [INSPIRE].CrossRefADSGoogle Scholar - [52]E. Caceres and A. Guijosa,
*Drag force in charged N*= 4*SYM plasma*,*JHEP***11**(2006) 077 [hep-th/0605235] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [53]E. Caceres and A. Guijosa,
*On drag forces and jet quenching in strongly coupled plasmas*,*JHEP***12**(2006) 068 [hep-th/0606134] [INSPIRE].CrossRefADSGoogle Scholar - [54]T. Matsuo, D. Tomino and W.-Y. Wen,
*Drag force in SYM plasma with B field from AdS/CFT*,*JHEP***10**(2006) 055 [hep-th/0607178] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [55]E. Nakano, S. Teraguchi and W.-Y. Wen,
*Drag force, jet quenching and AdS/QCD*,*Phys. Rev.***D 75**(2007) 085016 [hep-ph/0608274] [INSPIRE].ADSGoogle Scholar - [56]P. Talavera,
*Drag force in a string model dual to large-N QCD*,*JHEP***01**(2007) 086 [hep-th/0610179] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [57]S.S. Gubser,
*Comparing the drag force on heavy quarks in N*= 4*super-Yang-Mills theory and QCD*,*Phys. Rev.***D 76**(2007) 126003 [hep-th/0611272] [INSPIRE].ADSGoogle Scholar - [58]G. Bertoldi, F. Bigazzi, A.L. Cotrone and J.D. Edelstein,
*Holography and unquenched quark-gluon plasmas*,*Phys. Rev.***D 76**(2007) 065007 [hep-th/0702225] [INSPIRE].ADSGoogle Scholar - [59]H. Liu, K. Rajagopal and Y. Shi,
*Robustness and infrared sensitivity of various observables in the application of AdS/CFT to heavy ion collisions*,*JHEP***08**(2008) 048 [arXiv:0803.3214] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [60]U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti,
*Thermal transport and drag force in improved holographic QCD*,*JHEP***12**(2009) 056 [arXiv:0906.1890] [INSPIRE].CrossRefGoogle Scholar - [61]C. Hoyos-Badajoz,
*Drag and jet quenching of heavy quarks in a strongly coupled N*= 2^{*}*plasma*,*JHEP***09**(2009) 068 [arXiv:0907.5036] [INSPIRE].CrossRefADSGoogle Scholar - [62]F. Bigazzi, A.L. Cotrone, J. Mas, A. Paredes, A.V. Ramallo and J. Tarrio,
*D*3*-D*7*quark-gluon plasmas*,*JHEP***11**(2009) 117 [arXiv:0909.2865] [INSPIRE].CrossRefADSGoogle Scholar - [63]A. Nata Atmaja and K. Schalm,
*Anisotropic drag force from*4*D Kerr-AdS black holes*,*JHEP***04**(2011) 070 [arXiv:1012.3800] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [64]M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli,
*Drag force in a strongly coupled anisotropic plasma*,*JHEP***08**(2012) 100 [arXiv:1202.3696] [INSPIRE].CrossRefADSGoogle Scholar - [65]K.B. Fadafan and H. Soltanpanahi,
*Energy loss in a strongly coupled anisotropic plasma*,*JHEP***10**(2012) 085 [arXiv:1206.2271] [INSPIRE].CrossRefADSGoogle Scholar - [66]D. Giataganas,
*Probing strongly coupled anisotropic plasma*,*JHEP***07**(2012) 031 [arXiv:1202.4436] [INSPIRE].CrossRefADSGoogle Scholar - [67]P.M. Chesler and L.G. Yaffe,
*Holography and colliding gravitational shock waves in asymptotically AdS*_{5}*spacetime*,*Phys. Rev. Lett.***106**(2011) 021601 [arXiv:1011.3562] [INSPIRE].CrossRefADSGoogle Scholar - [68]P.M. Chesler, M. Lekaveckas and K. Rajagopal,
*Heavy quark energy loss far from equilibrium in a strongly coupled collision*,*JHEP***10**(2013) 013 [arXiv:1306.0564] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [69]K.A. Mamo and H.-U. Yee,
*Gradient correction to photon emission rate at strong coupling*,*Phys. Rev.***D 91**(2015) 086011 [arXiv:1409.7674] [INSPIRE].ADSGoogle Scholar - [70]P.V. Buividovich,
*Spontaneous chiral symmetry breaking and the chiral magnetic effect for interacting Dirac fermions with chiral imbalance*,*Phys. Rev.***D 90**(2014) 125025 [arXiv:1408.4573] [INSPIRE].ADSGoogle Scholar - [71]S. Golkar and D.T. Son,
*(Non)-renormalization of the chiral vortical effect coefficient*,*JHEP***02**(2015) 169 [arXiv:1207.5806] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [72]K. Jensen, R. Loganayagam and A. Yarom,
*Thermodynamics, gravitational anomalies and cones*,*JHEP***02**(2013) 088 [arXiv:1207.5824] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar - [73]V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov and M.V. Ulybyshev,
*Numerical evidence of the axial magnetic effect*,*Phys. Rev.***D 88**(2013) 071501 [arXiv:1303.6266] [INSPIRE].ADSGoogle Scholar - [74]V. Braguta et al.,
*Temperature dependence of the axial magnetic effect in two-color quenched QCD*,*Phys. Rev.***D 89**(2014) 074510 [arXiv:1401.8095] [INSPIRE].ADSGoogle Scholar - [75]M. Stephanov and H-U. Yee, private communication.Google Scholar
- [76]
- [77]E. Megias, K. Landsteiner and F. Pena-Benitez,
*Fluid/gravity correspondence and holographic mixed gauge-gravitational anomaly*,*Acta Phys. Polon. Supp.***6**(2013) 45 [INSPIRE].CrossRefGoogle Scholar - [78]
- [79]STAR collaboration, L. Adamczyk et al.,
*Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC*,*Phys. Rev. Lett.***113**(2014) 052302 [arXiv:1404.1433] [INSPIRE]. - [80]STAR collaboration, B.I. Abelev et al.,
*Azimuthal charged-particle correlations and possible local strong parity violation*,*Phys. Rev. Lett.***103**(2009) 251601 [arXiv:0909.1739] [INSPIRE]. - [81]STAR collaboration, B.I. Abelev et al.,
*Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions*,*Phys. Rev.***C 81**(2010) 054908 [arXiv:0909.1717] [INSPIRE]. - [82]ALICE collaboration,
*Charge separation relative to the reaction plane in Pb-Pb collisions at*\( \sqrt{s_{NN}}=2.76 \)*TeV*,*Phys. Rev. Lett.***110**(2013) 012301 [arXiv:1207.0900] [INSPIRE]. - [83]STAR collaboration, L. Adamczyk et al.,
*Fluctuations of charge separation perpendicular to the event plane and local parity violation in*\( \sqrt{s_{NN}}=200 \)*GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider*,*Phys. Rev.***C 88**(2013) 064911 [arXiv:1302.3802] [INSPIRE]. - [84]Y. Hirono, T. Hirano and D.E. Kharzeev,
*The chiral magnetic effect in heavy-ion collisions from event-by-event anomalous hydrodynamics*, arXiv:1412.0311 [INSPIRE]. - [85]K. Tuchin,
*Particle production in strong electromagnetic fields in relativistic heavy-ion collisions*,*Adv. High Energy Phys.***2013**(2013) 490495 [arXiv:1301.0099] [INSPIRE]. - [86]L. McLerran and V. Skokov,
*Comments about the electromagnetic field in heavy-ion collisions*,*Nucl. Phys.***A 929**(2014) 184 [arXiv:1305.0774] [INSPIRE].CrossRefADSGoogle Scholar - [87]K. Tuchin,
*Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions*,*Phys. Rev.***C 88**(2013) 024911 [arXiv:1305.5806] [INSPIRE].ADSGoogle Scholar - [88]U. Gürsoy, D. Kharzeev and K. Rajagopal,
*Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions*,*Phys. Rev.***C 89**(2014) 054905 [arXiv:1401.3805] [INSPIRE].ADSGoogle Scholar - [89]STAR collaboration, F. Zhao, Λ(
*K*_{S}^{0}) −*h*^{±}*and*Λ*-p azimuthal correlations with respect to event plane and search for chiral magnetic and vortical effects*,*Nucl. Phys.***A 931**(2014) 746 [INSPIRE].