Advertisement

Rapidity evolution of gluon TMD from low to moderate x

  • I. Balitsky
  • A. Tarasov
Open Access
Regular Article - Theoretical Physics

Abstract

We study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small x ≪ 1 to linear evolution at moderate x ∼ 1.

Keywords

Resummation QCD Deep Inelastic Scattering 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].ADSGoogle Scholar
  2. [2]
    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
  3. [3]
    J.C. Collins, Foundations of Perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).CrossRefGoogle Scholar
  4. [4]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q T And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P.J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D 63 (2001) 094021 [hep-ph/0009343] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].ADSGoogle Scholar
  10. [10]
    Y.V. Kovchegov, Small x F(2) structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].ADSGoogle Scholar
  11. [11]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].ADSGoogle Scholar
  12. [12]
    Y.V. Kovchegov and M.D. Sievert, Calculating TMDs of an Unpolarized Target: Quasi-Classical Approximation and Quantum Evolution, arXiv:1505.01176 [INSPIRE].
  13. [13]
    J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  15. [15]
    A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov double logarithms resummation in hard processes in the small-x saturation formalism, Phys. Rev. D 88 (2013) 114010 [arXiv:1308.2993] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov Resummation in Small-x Saturation Formalism, Phys. Rev. Lett. 110 (2013) 082301 [arXiv:1210.5792] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    I. Balitsky, Quark contribution to the small-x evolution of color dipole, Phys. Rev. D 75 (2007) 014001 [hep-ph/0609105] [INSPIRE].ADSGoogle Scholar
  18. [18]
    I. Balitsky and G.A. Chirilli, Next-to-leading order evolution of color dipoles, Phys. Rev. D 77 (2008) 014019 [arXiv:0710.4330] [INSPIRE].ADSGoogle Scholar
  19. [19]
    I. Balitsky and G.A. Chirilli, NLO evolution of color dipoles in N = 4 SYM, Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  20. [20]
    I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D 88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].ADSGoogle Scholar
  21. [21]
    I. Balitsky and V.M. Braun, The nonlocal operator expansion for structure functions of e + e annihilation, Phys. Lett. B 222 (1989) 123.CrossRefADSGoogle Scholar
  22. [22]
    I.I. Balitsky and V.M. Braun, The Nonlocal operator expansion for inclusive particle production in e + e annihilation, Nucl. Phys. B 361 (1991) 93 [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    I.I. Balitsky and V.M. Braun, Valleys in Minkowski space and instanton induced cross-sections, Nucl. Phys. B 380 (1992) 51 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].CrossRefADSMATHGoogle Scholar
  25. [25]
    I. Balitsky, High-energy QCD and Wilson lines, in At the frontier of particle physics. Vol. 2, M. Shifman eds., World Scientific, Singapore (2001) [hep-ph/0101042] [INSPIRE].
  26. [26]
    I. Balitsky, High-energy amplitudes in the next-to-leading order, in Subtleties in Quantum Field Theory, D. Diakonov eds., PNPI Publishing, Gatchina Russia (2010). [arXiv:1004.0057] [INSPIRE].
  27. [27]
    I.I. Balitsky, String operator expansion of the T product of two currents near the light cone, Phys. Lett. B 124 (1983) 230 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    I.I. Balitsky and V.M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311 (1989) 541 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Corrections in High Energy Processes using Effective Field Theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T. Becher and M. Neubert, Drell-Yan Production at Small q T , Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  32. [32]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [INSPIRE].ADSGoogle Scholar
  34. [34]
    I. Balitsky, Scattering of shock waves in QCD, Phys. Rev. D 70 (2004) 114030 [hep-ph/0409314] [INSPIRE].ADSGoogle Scholar
  35. [35]
    I. Balitsky and A. Tarasov, Evolution of gluon TMD at low and moderate x, Int. J. Mod. Phys. Conf. Ser. 37 (2015) 1560058 [arXiv:1411.0714] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    F. Dominguez, A.H. Mueller, S. Munier and B.-W. Xiao, On the small-x evolution of the color quadrupole and the Weizsácker-Williams gluon distribution, Phys. Lett. B 705 (2011) 106 [arXiv:1108.1752] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    I. Balitsky, Operator expansion for diffractive high-energy scattering, hep-ph/9706411 [INSPIRE].
  38. [38]
    G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    G.P. Korchemsky, Double Logarithmic Asymptotics in QCD, Phys. Lett. B 217 (1989) 330 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    G.P. Korchemsky, Sudakov Form-factor in QCD, Phys. Lett. B 220 (1989) 629 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    M. Ciafaloni, Coherence effects in initial jets at small Q 2 /s, Nucl. Phys. B 296 (1988) 49.CrossRefADSGoogle Scholar
  42. [42]
    S. Catani, F. Fiorani and G. Marchesini, QCD Coherence in Initial State Radiation, Phys. Lett. B 234 (1990) 339 [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    S. Catani, F. Fiorani and G. Marchesini, Small x Behavior of Initial State Radiation in Perturbative QCD, Nucl. Phys. B 336 (1990) 18 [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    Y.V. Kovchegov and H. Weigert, Triumvirate of Running Couplings in Small-x Evolution, Nucl. Phys. A 784 (2007) 188 [hep-ph/0609090] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    Y.V. Kovchegov and H. Weigert, Quark loop contribution to BFKL evolution: Running coupling and leading-N(f ) NLO intercept, Nucl. Phys. A 789 (2007) 260 [hep-ph/0612071] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D 89 (2014) 061704 [arXiv:1310.0378] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Kovner, M. Lublinsky and Y. Mulian, NLO JIMWLK evolution unabridged, JHEP 08 (2014) 114 [arXiv:1405.0418].CrossRefADSGoogle Scholar
  50. [50]
    G.P. Salam, A Resummation of large subleading corrections at small x, JHEP 07 (1998) 019 [hep-ph/9806482] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    M. Ciafaloni, D. Colferai and G.P. Salam, Renormalization group improved small x equation, Phys. Rev. D 60 (1999) 114036 [hep-ph/9905566] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Ciafaloni, D. Colferai, G.P. Salam and A.M. Stasto, Renormalization group improved small x Greens function, Phys. Rev. D 68 (2003) 114003 [hep-ph/0307188] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Sabio Vera, AnAll-polesapproximation to collinear resummations in the Regge limit of perturbative QCD, Nucl. Phys. B 722 (2005) 65 [hep-ph/0505128] [INSPIRE].CrossRefADSMATHGoogle Scholar
  54. [54]
    L. Motyka and A.M. Stasto, Exact kinematics in the small x evolution of the color dipole and gluon cascade, Phys. Rev. D 79 (2009) 085016 [arXiv:0901.4949] [INSPIRE].ADSGoogle Scholar
  55. [55]
    G. Beuf, Improving the kinematics for low-x QCD evolution equations in coordinate space, Phys. Rev. D 89 (2014) 074039 [arXiv:1401.0313] [INSPIRE].ADSGoogle Scholar
  56. [56]
    E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Resumming double logarithms in the QCD evolution of color dipoles, Phys. Lett. B 744 (2015) 293 [arXiv:1502.05642] [INSPIRE].CrossRefADSMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Physics DepartmentOld Dominion UniversityNorfolkU.S.A.
  2. 2.Theory Group, Jefferson Lab (JLAB)Newport NewsU.S.A.

Personalised recommendations