Particle physics and cosmology with high-scale SUSY breaking in five-dimensional supergravity models

Open Access
Regular Article - Theoretical Physics


We discuss a high-scale SUSY breaking scenario with the wino dark matter in the five-dimensional supergravity model on S 1 /Z 2. The extra U(1) symmetries broken by the orbifold projection control the flavor structure of soft SUSY-breaking parameters as well as the Yukawa couplings, and a scalar component of the one of moduli multiplets, which arise from extra-dimensional components of the U(1) vector multiplets, induces the slow-roll inflation. Because of the supersymmetric moduli stabilization as well as the moduli inflation, it is found that the correct dark matter relic abundance is non-thermally generated by the gravitino decaying into the wino.


Supersymmetry Phenomenology Phenomenology of Field Theories in Higher Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].ADSGoogle Scholar
  2. [2]
    D.E. Kaplan and T.M.P. Tait, Supersymmetry breaking, fermion masses and a small extra dimension, JHEP 06 (2000) 020 [hep-ph/0004200] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    H. Abe and Y. Sakamura, Flavor structure with multi moduli in 5D supergravity, Phys. Rev. D 79 (2009) 045005 [arXiv:0807.3725] [INSPIRE].ADSGoogle Scholar
  4. [4]
    H. Abe, H. Otsuka, Y. Sakamura and Y. Yamada, SUSY flavor structure of generic 5D supergravity models, Eur. Phys. J. C 72 (2012) 2018 [arXiv:1111.3721] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    Y. Sakamura and Y. Yamada, Impacts of non-geometric moduli on effective theory of 5D supergravity, JHEP 11 (2013) 090 [Erratum ibid. 01 (2014) 181] [arXiv:1307.5585] [INSPIRE].
  6. [6]
    Y. Sakamura and Y. Yamada, Natural realization of a large extra dimension in 5D supersymmetric theory, Prog. Theor. Exp. Phys. 2014 (2014) 093B02 [arXiv:1401.1921] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    F. Paccetti Correia, M.G. Schmidt and Z. Tavartkiladze, Gauge and modulus inflation from 5D orbifold SUGRA, Nucl. Phys. B 739 (2006) 156 [hep-th/0504083] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    F. Paccetti Correia, M.G. Schmidt and Z. Tavartkiladze, Natural inflation from 5D SUGRA and low reheat temperature, Nucl. Phys. B 898 (2015) 173 [arXiv:1501.03520] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    H. Abe and H. Otsuka, Moduli inflation in five-dimensional supergravity models, JCAP 11 (2014) 027 [arXiv:1405.6520] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    M. Zucker, Minimal off-shell supergravity in five-dimensions, Nucl. Phys. B 570 (2000) 267 [hep-th/9907082] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    M. Zucker, Gauged N = 2 off-shell supergravity in five-dimensions, JHEP 08 (2000) 016 [hep-th/9909144] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    M. Zucker, Supersymmetric brane world scenarios from off-shell supergravity, Phys. Rev. D 64 (2001) 024024 [hep-th/0009083] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    M. Zucker, Off-shell supergravity in five-dimensions and supersymmetric brane world scenarios, Fortsch. Phys. 51 (2003) 899 [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  14. [14]
    T. Kugo and K. Ohashi, Off-shell D = 5 supergravity coupled to matter Yang-Mills system, Prog. Theor. Phys. 105 (2001) 323 [hep-ph/0010288] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  15. [15]
    T. Fujita and K. Ohashi, Superconformal tensor calculus in five-dimensions, Prog. Theor. Phys. 106 (2001) 221 [hep-th/0104130] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  16. [16]
    T. Fujita, T. Kugo and K. Ohashi, Off-shell formulation of supergravity on orbifold, Prog. Theor. Phys. 106 (2001) 671 [hep-th/0106051] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    T. Kugo and K. Ohashi, Superconformal tensor calculus on orbifold in 5D, Prog. Theor. Phys. 108 (2002) 203 [hep-th/0203276] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  18. [18]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].
  19. [19]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  20. [20]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets at \( \sqrt{s}=8 \) TeV proton-proton collisions with the ATLAS detector, JHEP 10 (2014) 024 [arXiv:1407.0600] [INSPIRE].
  21. [21]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
  22. [22]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  23. [23]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  24. [24]
    H. Abe, T. Kobayashi and Y. Omura, Relaxed fine-tuning in models with non-universal gaugino masses, Phys. Rev. D 76 (2007) 015002 [hep-ph/0703044] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H. Abe, J. Kawamura and H. Otsuka, The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses at the GUT scale, Prog. Theor. Exp. Phys. 2013 (2013) 013B02 [arXiv:1208.5328] [INSPIRE].Google Scholar
  26. [26]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.L. Feng and D. Sanford, A natural 125 GeV Higgs boson in the MSSM from focus point supersymmetry with A-terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
  29. [29]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar
  30. [30]
    L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10-100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    M. Fujii and K. Hamaguchi, Higgsino and wino dark matter from Q ball decay, Phys. Lett. B 525 (2002) 143 [hep-ph/0110072] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    J.L. Evans, M. Ibe, K.A. Olive and T.T. Yanagida, Light higgsinos in pure gravity mediation, Phys. Rev. D 91 (2015) 055008 [arXiv:1412.3403] [INSPIRE].ADSGoogle Scholar
  39. [39]
    H. Abe and Y. Sakamura, Dynamical radion superfield in 5D action, Phys. Rev. D 71 (2005) 105010 [hep-th/0501183] [INSPIRE].ADSGoogle Scholar
  40. [40]
    H. Abe and Y. Sakamura, Consistent dimensional reduction of five-dimensional off-shell supergravity, Phys. Rev. D 73 (2006) 125013 [hep-th/0511208] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    F. Paccetti Correia, M.G. Schmidt and Z. Tavartkiladze, 4D superfield reduction of 5D orbifold SUGRA and heterotic M-theory, Nucl. Phys. B 751 (2006) 222 [hep-th/0602173] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    H. Abe and Y. Sakamura, Roles of Z 2 -odd N = 1 multiplets in off-shell dimensional reduction of 5D supergravity, Phys. Rev. D 75 (2007) 025018 [hep-th/0610234] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    H. Abe and Y. Sakamura, Superfield description of 5D supergravity on general warped geometry, JHEP 10 (2004) 013 [hep-th/0408224] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  44. [44]
    F. Paccetti Correia, M.G. Schmidt and Z. Tavartkiladze, Superfield approach to 5D conformal SUGRA and the radion, Nucl. Phys. B 709 (2005) 141 [hep-th/0408138] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    Y. Sakamura, Direct relation of linearized supergravity to superconformal formulation, JHEP 12 (2011) 008 [arXiv:1107.4247] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  46. [46]
    Y. Sakamura, Superfield description of gravitational couplings in generic 5D supergravity, JHEP 07 (2012) 183 [arXiv:1204.6603] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five-dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  49. [49]
    H. Otsuka, Moduli stabilization to a natural MSSM with gravitino dark matter and inflation, Phys. Rev. D 92 (2015) 045001 [arXiv:1504.02040] [INSPIRE].ADSGoogle Scholar
  50. [50]
    N. Maru and N. Okada, Supersymmetric radius stabilization in warped extra dimensions, Phys. Rev. D 70 (2004) 025002 [hep-th/0312148] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    H. Abe and Y. Sakamura, Moduli stabilization in 5D gauged supergravity with universal hypermultiplet and boundary superpotentials, Nucl. Phys. B 796 (2008) 224 [arXiv:0709.3791] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  52. [52]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    L. O’Raifeartaigh, Spontaneous symmetry breaking for chiral scalar superfields, Nucl. Phys. B 96 (1975) 331 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  54. [54]
    R. Kallosh and A.D. Linde, OKKLT, JHEP 02 (2007) 002 [hep-th/0611183] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  55. [55]
    R. Kitano, Gravitational gauge mediation, Phys. Lett. B 641 (2006) 203 [hep-ph/0607090] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflationary universe, Phys. Rev. D 61 (2000) 083512 [hep-ph/9907559] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Czerny, T. Higaki and F. Takahashi, Multi-natural inflation in supergravity, JHEP 05 (2014) 144 [arXiv:1403.0410] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  59. [59]
    G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  61. [61]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].
  63. [63]
    CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s}=8 \) TeV,JHEP 01(2015) 096[arXiv:1411.6006] [INSPIRE].
  64. [64]
    J.L. Evans, M.A.G. Garcia and K.A. Olive, The moduli and gravitino (non)-problems in models with strongly stabilized moduli, JCAP 03 (2014) 022 [arXiv:1311.0052] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  65. [65]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [hep-ph/0012052] [INSPIRE].
  66. [66]
    M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].ADSGoogle Scholar
  68. [68]
    J. Pradler and F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].Google Scholar
  72. [72]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect detection analysis: wino dark matter case study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsWaseda UniversityTokyoJapan

Personalised recommendations