Journal of High Energy Physics

, 2013:226 | Cite as

Supersymmetric SU(5) grand unification for a post Higgs boson era

  • D. J. Miller
  • A. P. Morais


We investigate models of supersymmetric grand unification based on the gauge group SU(5). We consider models with non-universal gaugino masses and confront them with low energy constraints, including the Higgs boson mass and the Dark Matter relic density. We also discuss fine-tuning and show the effect of not including the μ-parameter into fine tuning determinations. With this relaxation, we find viable scenarios with low fine tuning and study some model choices for gaugino mass ratios. We demonstrate that some orbifold inspired models may provide low fine-tuning and the preferred relic abundance of Dark Matter while evading all experimental constraints. We present benchmarks that should be explored at the LHC and future colliders.


Supersymmetry Phenomenology 


  1. [1]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-2012-033 (2012).
  5. [5]
    ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in L = 4.7 fb-1 of \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-2012-037 (2012).
  6. [6]
    ATLAS collaboration, Further search for supersymmetry at \( \sqrt{s}=7 \) TeV in final states with jets, missing transverse momentum and one isolated lepton, ATLAS-CONF-2012-041 (2012).
  7. [7]
    CMS collaboration, Interpretation of Searches for Supersymmetry, CMS-PAS-SUS-11-016.
  8. [8]
    CMS collaboration, Search for Supersymmetry in hadronic final states using MT2 with the CMS detector at 7 TeV, CMS-PAS-SUS-12-002.
  9. [9]
    CMS collaboration, Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005.
  10. [10]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [CMS-SUS-12-011] [arXiv:1207.1898] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  12. [12]
    LHeC Study Group collaboration, J. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.E. Brau et al., International Linear Collider Physics and detectors: 2011 Status Report, CERN-LCD-NOTE-2011-038 (2012).Google Scholar
  14. [14]
    P. Lebrun et al., The CLIC Programme: Towards a Staged e + e Linear Collider Exploring the Terascale: CLIC Conceptual Design Report, arXiv:1209.2543 [INSPIRE].
  15. [15]
    H. Georgi and S. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Wang, Supersymmetry Breaking Scalar Masses and Trilinear Soft Terms From High-Dimensional Operators in E 6 SUSY GUT, Nucl. Phys. B 851 (2011) 104 [arXiv:1103.0069] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F. Braam, A. Knochel and J. Reuter, An Exceptional SSM from E6 Orbifold GUTs with intermediate LR symmetry, JHEP 06 (2010) 013 [arXiv:1001.4074] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].ADSGoogle Scholar
  19. [19]
    L.E. Ibáñez and G.G. Ross, Low-Energy Predictions in Supersymmetric Grand Unified Theories, Phys. Lett. B 105 (1981) 439 [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Einhorn and D. Jones, The Weak Mixing Angle and Unification Mass in Supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].ADSGoogle Scholar
  21. [21]
    W.J. Marciano and G. Senjanović, Predictions of Supersymmetric Grand Unified Theories, Phys. Rev. D 25 (1982) 3092 [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Langacker, Precision tests of the standard model, in Boston 1990, Proceedings, Particles, strings and cosmology, pg. 237–269 and Pennsylvania University, Philadelphia UPR-0435T.Google Scholar
  23. [23]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].
  25. [25]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].ADSGoogle Scholar
  26. [26]
    F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, The effective experimental constraints on M (susy) and M (gut), Nuovo Cim. A 104 (1991) 1817 [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Giunti, C. Kim and U. Lee, Running coupling constants and grand unification models, Mod. Phys. Lett. A 6 (1991) 1745 [INSPIRE].ADSGoogle Scholar
  28. [28]
    P. Langacker and N. Polonsky, The strong coupling, unification and recent data, Phys. Rev. D 52 (1995) 3081 [hep-ph/9503214] [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Ramond, The Family Group in Grand Unified Theories, hep-ph/9809459 [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for scalar bottom pair production with the ATLAS detector in pp Collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].ADSGoogle Scholar
  31. [31]
    ATLAS collaboration, Search for Scalar Top Quark Pair Production in Natural Gauge Mediated Supersymmetry Models with the ATLAS Detector in pp Collisions at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-036 (2012).
  32. [32]
    ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton–proton collisions, ATLAS-CONF-2012-059 (2012).
  33. [33]
    H. Abe, T. Kobayashi and Y. Omura, Relaxed fine-tuning in models with non-universal gaugino masses, Phys. Rev. D 76 (2007) 015002 [hep-ph/0703044] [INSPIRE].ADSGoogle Scholar
  34. [34]
    I. Gogoladze, M.U. Rehman and Q. Shafi, Amelioration of Little Hierarchy Problem in SU(4)(c) × SU(2)(L) × SU(2)(R), Phys. Rev. D 80 (2009) 105002 [arXiv:0907.0728] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Horton and G. Ross, Naturalness and Focus Points with Non-Universal Gaugino Masses, Nucl. Phys. B 830 (2010) 221 [arXiv:0908.0857] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Antusch, L. Calibbi, V. Maurer, M. Monaco and M. Spinrath, Naturalness of the Non-Universal MSSM in the Light of the Recent Higgs Results, JHEP 01 (2013) 187 [arXiv:1207.7236] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Caron, J. Laamanen, I. Niessen and A. Strubig, Higgs and non-universal gaugino masses: no SUSY signal expected yet?, JHEP 06 (2012) 008 [arXiv:1202.5288] [INSPIRE].ADSGoogle Scholar
  38. [38]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].ADSGoogle Scholar
  39. [39]
    Planck collaboration, P. Ade et al., Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062 [INSPIRE].
  40. [40]
    N. Sakai, Naturalness in Supersymmetric Guts, Z. Phys. C 11 (1981) 153 [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSGoogle Scholar
  42. [42]
    N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.R. Ellis, D.V. Nanopoulos and S. Rudaz, GUTs 3: SUSY GUTs 2, Nucl. Phys. B 202 (1982) 43 [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Dimopoulos, S. Raby and F. Wilczek, Proton Decay in Supersymmetric Models, Phys. Lett. B 112 (1982) 133 [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Goto and T. Nihei, Effect of RRRR dimension five operator on the proton decay in the minimal SU(5) SUGRA GUT model, Phys. Rev. D 59 (1999) 115009 [hep-ph/9808255] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P. Nath, A.H. Chamseddine and R.L. Arnowitt, Nucleon Decay in Supergravity Unified Theories, Phys. Rev. D 32 (1985) 2348 [INSPIRE].ADSGoogle Scholar
  47. [47]
    P. Nath and R.L. Arnowitt, Limits on Photino and Squark Masses From Proton Lifetime in Supergravity and Superstring Models, Phys. Rev. D 38 (1988) 1479 [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [INSPIRE].ADSGoogle Scholar
  50. [50]
    B. Bajc, P. Fileviez Perez and G. Senjanović, Proton decay in minimal supersymmetric SU(5), Phys. Rev. D 66 (2002) 075005 [hep-ph/0204311] [INSPIRE].ADSGoogle Scholar
  51. [51]
    B. Bajc, P. Fileviez Perez and G. Senjanović, Minimal supersymmetric SU(5) theory and proton decay: Where do we stand?, hep-ph/0210374 [INSPIRE].
  52. [52]
    G. Senjanović, Supersymmetry and Unification: Heavy Top Was the Key, Int. J. Mod. Phys. Conf. Ser. 13 (2012) 182 [arXiv:1205.5557] [INSPIRE].Google Scholar
  53. [53]
    Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [INSPIRE].ADSGoogle Scholar
  55. [55]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Hebecker and J. March-Russell, A Minimal \( {{{{S^1}}} \left/ {{\left( {{Z_2}\times Z_2^{\prime }} \right)}} \right.} \) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    A.B. Kobakhidze, Proton stability in TeV scale GUTs, Phys. Lett. B 514 (2001) 131 [hep-ph/0102323] [INSPIRE].MathSciNetADSGoogle Scholar
  58. [58]
    K.A. Intriligator and N. Seiberg, Lectures on Supersymmetry Breaking, Class. Quant. Grav. 24 (2007) S741 [hep-ph/0702069] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  59. [59]
    M. Dine and J.D. Mason, Supersymmetry and Its Dynamical Breaking, Rept. Prog. Phys. 74 (2011) 056201 [arXiv:1012.2836] [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    R. Kitano and Y. Ookouchi, Supersymmetry breaking and gauge mediation in models with a generic superpotential, Phys. Lett. B 675 (2009) 80 [arXiv:0812.0543] [INSPIRE].ADSGoogle Scholar
  61. [61]
    R. Kitano, H. Ooguri and Y. Ookouchi, Supersymmetry Breaking and Gauge Mediation, Ann. Rev. Nucl. Part. Sci. 60 (2010) 491 [arXiv:1001.4535] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Y. Shirman, TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking, arXiv:0907.0039 [INSPIRE].
  63. [63]
    S. Ferrara and L. Maiani, An Introduction To Supersymmetry Breaking In Extended Supergravity, CERN-TH-4232/85 (1985).
  64. [64]
    D. Chung, L. Everett, G. Kane, S. King, J.D. Lykken et al., The soft supersymmetry breaking Lagrangian: Theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].
  66. [66]
    H. Baer, A. Belyaev, T. Krupovnickas and A. Mustafayev, SUSY normal scalar mass hierarchy reconciles (g − 2)μ , bsγ and relic density, JHEP 06 (2004) 044 [hep-ph/0403214] [INSPIRE].ADSGoogle Scholar
  67. [67]
    E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen, S. Ferrara and L. Girardello, SuperHiggs Effect in Supergravity with General Scalar Interactions, Phys. Lett. B 79 (1978) 231 [INSPIRE].ADSGoogle Scholar
  68. [68]
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Spontaneous Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological Constant, Nucl. Phys. B 147 (1979) 105 [INSPIRE].ADSGoogle Scholar
  69. [69]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Coupling Supersymmetric Yang-Mills Theories to Supergravity, Phys. Lett. B 116 (1982) 231 [INSPIRE].ADSGoogle Scholar
  70. [70]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].ADSGoogle Scholar
  71. [71]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis, Gaugino Masses and Grand Unification, Phys. Lett. B 155 (1985) 381 [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Drees, Phenomenological Consequences of N = 1 Supergravity Theories With Nonminimal Kinetic Energy Terms for Vector Superfields, Phys. Lett. B 158 (1985) 409 [INSPIRE].ADSGoogle Scholar
  73. [73]
    D.G. Cerdeno and C. Munoz, An introduction to SUGRA, in proceedings of Corfu Summer Institute on Elementary Particle Physics, Kerkyra, Greece, 6–20 September 1998 PoS(corfu98)011.
  74. [74]
    S. Bhattacharya and J. Chakrabortty, Gaugino mass non-universality in an SO(10) supersymmetric Grand Unified Theory: Low-energy spectra and collider signals, Phys. Rev. D 81 (2010) 015007 [arXiv:0903.4196] [INSPIRE].ADSGoogle Scholar
  75. [75]
    C.T. Hill, Are There Significant Gravitational Corrections to the Unification Scale?, Phys. Lett. B 135 (1984) 47 [INSPIRE].ADSGoogle Scholar
  76. [76]
    J. Chakrabortty and A. Raychaudhuri, A note on dimension-5 operators in GUTs and their impact, Phys. Lett. B 673 (2009) 57 [arXiv:0812.2783] [INSPIRE].ADSGoogle Scholar
  77. [77]
    J. Chakrabortty and A. Raychaudhuri, Dimension-5 operators and the unification condition in SO(10) and E 6, arXiv:1006.1252 [INSPIRE].
  78. [78]
    S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].ADSGoogle Scholar
  79. [79]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSMATHGoogle Scholar
  80. [80]
    E.A. Baltz and P. Gondolo, Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter, JHEP 10 (2004) 052 [hep-ph/0407039] [INSPIRE].ADSGoogle Scholar
  81. [81]
    B. Allanach and C. Lester, Multi-dimensional mSUGRA likelihood maps, Phys. Rev. D 73 (2006) 015013 [hep-ph/0507283] [INSPIRE].ADSGoogle Scholar
  82. [82]
    B. Allanach, Naturalness priors and fits to the constrained minimal supersymmetric standard model, Phys. Lett. B 635 (2006) 123 [hep-ph/0601089] [INSPIRE].ADSGoogle Scholar
  83. [83]
    R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].Google Scholar
  84. [84]
    L. Roszkowski, R.R. de Austri and R. Trotta, On the detectability of the CMSSM light Higgs boson at the Tevatron, JHEP 04 (2007) 084 [hep-ph/0611173] [INSPIRE].ADSGoogle Scholar
  85. [85]
    L. Roszkowski, R. Ruiz de Austri and R. Trotta, Implications for the Constrained MSSM from a new prediction for b, JHEP 07 (2007) 075 [arXiv:0705.2012] [INSPIRE].ADSGoogle Scholar
  86. [86]
    R. Trotta, R.R. de Austri and L. Roszkowski, Prospects for direct dark matter detection in the Constrained MSSM, New Astron. Rev. 51 (2007) 316 [astro-ph/0609126] [INSPIRE].ADSGoogle Scholar
  87. [87]
    B.C. Allanach, C.G. Lester and A.M. Weber, The Dark side of mSUGRA, JHEP 12 (2006) 065 [hep-ph/0609295] [INSPIRE].MathSciNetADSGoogle Scholar
  88. [88]
    B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [INSPIRE].ADSGoogle Scholar
  89. [89]
    L. Roszkowski, R.R. de Austri, J. Silk and R. Trotta, On prospects for dark matter indirect detection in the Constrained MSSM, Phys. Lett. B 671 (2009) 10 [arXiv:0707.0622] [INSPIRE].ADSGoogle Scholar
  90. [90]
    B.C. Allanach, M.J. Dolan and A.M. Weber, Global Fits of the Large Volume String Scenario to WMAP5 and Other Indirect Constraints Using Markov Chain Monte Carlo, JHEP 08 (2008) 105 [arXiv:0806.1184] [INSPIRE].ADSGoogle Scholar
  91. [91]
    B.C. Allanach and D. Hooper, Panglossian Prospects for Detecting Neutralino Dark Matter in Light of Natural Priors, JHEP 10 (2008) 071 [arXiv:0806.1923] [INSPIRE].ADSGoogle Scholar
  92. [92]
    F. Feroz, B.C. Allanach, M. Hobson, S.S. AbdusSalam, R. Trotta and A.M. Weber, Bayesian selection of sign μ within mSUGRA in global fits including WMAP5 results, JHEP 10 (2008) 064 [arXiv:0807.4512] [INSPIRE].ADSGoogle Scholar
  93. [93]
    R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [INSPIRE].ADSGoogle Scholar
  94. [94]
    M. Cabrera, J. Casas and R. Ruiz de Austri, Bayesian approach and Naturalness in MSSM analyses for the LHC, JHEP 03 (2009) 075 [arXiv:0812.0536] [INSPIRE].ADSGoogle Scholar
  95. [95]
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the Non-Universal Higgs Model, Phys. Rev. D 83 (2011) 015014 [arXiv:0903.1279] [INSPIRE].ADSGoogle Scholar
  96. [96]
    F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri and R. Trotta, Are \( BR\left( {\overline{B}\to {X_s}\gamma } \right) \) and (g − 2)μ consistent within the Constrained MSSM?, arXiv:0903.2487 [INSPIRE].
  97. [97]
    S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the Phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [INSPIRE].ADSGoogle Scholar
  98. [98]
    R. Trotta, R. Ruiz de Austri and C. Perez de los Heros, Prospects for dark matter detection with IceCube in the context of the CMSSM, JCAP 08 (2009) 034 [arXiv:0906.0366] [INSPIRE].ADSGoogle Scholar
  99. [99]
    S. AbdusSalam, B. Allanach, M. Dolan, F. Feroz and M. Hobson, Selecting a Model of Supersymmetry Breaking Mediation, Phys. Rev. D 80 (2009) 035017 [arXiv:0906.0957] [INSPIRE].ADSGoogle Scholar
  100. [100]
    M.E. Cabrera, Bayesian Study and Naturalness in MSSM Forecast for the LHC, arXiv:1005.2525 [INSPIRE].
  101. [101]
    B. Allanach and M.J. Dolan, Supersymmetry With Prejudice: Fitting the Wrong Model to LHC Data, Phys. Rev. D 86 (2012) 055022 [arXiv:1107.2856] [INSPIRE].ADSGoogle Scholar
  102. [102]
    L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian Implications of Current LHC Supersymmetry and Dark Matter Detection Searches for the Constrained MSSM, Phys. Rev. D 86 (2012) 095005 [arXiv:1202.1503] [INSPIRE].ADSGoogle Scholar
  103. [103]
    A. Fowlie et al., The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].ADSGoogle Scholar
  104. [104]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSGoogle Scholar
  105. [105]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSMATHGoogle Scholar
  106. [106]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSGoogle Scholar
  107. [107]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  108. [108]
    LHCb collaboration, First Evidence for the Decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].Google Scholar
  109. [109]
    Belle collaboration, I. Adachi et al., Measurement of \( {B^{-}}\to {\tau^{-}}{{\overline{\nu}}_{\tau }} \) with a Hadronic Tagging Method Using the Full Data Sample of Belle, Phys. Rev. Lett. 110 (2013) 131801 [arXiv:1208.4678] [INSPIRE].Google Scholar
  110. [110]
    BaBar collaboration, J. Lees et al., Evidence of Bτν decays with hadronic B tags, Phys. Rev. D 88 (2013) 031102 [arXiv:1207.0698] [INSPIRE].ADSGoogle Scholar
  111. [111]
    P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in \( B\to {D^{{\left( * \right)}}}\tau {{\overline{\nu}}_{\tau }} \) decays,Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].ADSGoogle Scholar
  112. [112]
    Muon G-2 collaboration, G. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  113. [113]
    M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].ADSGoogle Scholar
  114. [114]
    P. von Weitershausen, M. Schafer, H. Stöckinger-Kim and D. Stöckinger, Photonic SUSY Two-Loop Corrections to the Muon Magnetic Moment, Phys. Rev. D 81 (2010) 093004 [arXiv:1003.5820] [INSPIRE].ADSGoogle Scholar
  115. [115]
    D. Stöckinger, μ(g − 2) and physics beyond the Standard Model, in Lepton Dipole Moments, B. Lee Roberts and W.J. Marciano eds., World Scientific, Advanced series on directions in high energy physics 20 (2009).Google Scholar
  116. [116]
    D. Stöckinger, (g - 2)(mu) and physics beyond the Standard Model, Nucl. Phys. Proc. Suppl. 181-182 (2008) 32 [INSPIRE].ADSGoogle Scholar
  117. [117]
    D. Stöckinger, The Muon Magnetic Moment and Supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].ADSGoogle Scholar
  118. [118]
    R. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSGoogle Scholar
  119. [119]
    R. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  120. [120]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSGoogle Scholar
  121. [121]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSGoogle Scholar
  122. [122]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSGoogle Scholar
  123. [123]
    H.-Y. Cheng, The Strong CP Problem Revisited, Phys. Rept. 158 (1988) 1 [INSPIRE].ADSGoogle Scholar
  124. [124]
    J.E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept. 150 (1987) 1 [INSPIRE].ADSGoogle Scholar
  125. [125]
    R. Barbieri and G. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSGoogle Scholar
  126. [126]
    P. Athron and . Miller, D.J., A New Measure of Fine Tuning, Phys. Rev. D 76 (2007) 075010 [arXiv:0705.2241] [INSPIRE].
  127. [127]
    G. Gamberini, G. Ridolfi and F. Zwirner, On Radiative Gauge Symmetry Breaking in the Minimal Supersymmetric Model, Nucl. Phys. B 331 (1990) 331 [INSPIRE].ADSGoogle Scholar
  128. [128]
    R.L. Arnowitt and P. Nath, Loop corrections to radiative breaking of electroweak symmetry in supersymmetry, Phys. Rev. D 46 (1992) 3981 [INSPIRE].ADSGoogle Scholar
  129. [129]
    T. Kobayashi and Y. Yamagishi, QuasiYukawa fixed point due to decoupling of SUSY particles, Phys. Lett. B 381 (1996) 169 [hep-ph/9601374] [INSPIRE].ADSGoogle Scholar
  130. [130]
    J. Casas, J. Espinosa and H. Haber, The Higgs mass in the MSSM infrared fixed point scenario, Nucl. Phys. B 526 (1998) 3 [hep-ph/9801365] [INSPIRE].ADSGoogle Scholar
  131. [131]
    D.J. Miller, R. Nevzorov and P. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].ADSGoogle Scholar
  132. [132]
    S. Choi, D.J. Miller and P. Zerwas, The neutralino sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 711 (2005) 83 [hep-ph/0407209] [INSPIRE].ADSGoogle Scholar
  133. [133]
    S.K. Soni and H.A. Weldon, Analysis of the Supersymmetry Breaking Induced by N = 1 Supergravity Theories, Phys. Lett. B 126 (1983) 215 [INSPIRE].ADSGoogle Scholar
  134. [134]
    G. Giudice and A. Masiero, A Natural Solution to the μ Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSGoogle Scholar
  135. [135]
    F. Brummer, R. Kappl, M. Ratz and K. Schmidt-Hoberg, Approximate R-symmetries and the μ term, JHEP 04 (2010) 006 [arXiv:1003.0084] [INSPIRE].ADSGoogle Scholar
  136. [136]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995)747-748] [hep-ph/9308271] [INSPIRE].
  137. [137]
    J. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].ADSGoogle Scholar
  138. [138]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE].ADSMATHGoogle Scholar
  139. [139]
    H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev et al., Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass, Phys. Rev. D 87 (2013) 115028 [arXiv:1212.2655] [INSPIRE].ADSGoogle Scholar
  140. [140]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Orbifold induced mu term and electroweak symmetry breaking, Phys. Lett. B 387 (1996) 769 [hep-ph/9607405] [INSPIRE].ADSGoogle Scholar
  141. [141]
    M. Kawasaki, N. Kitajima, K. Nakayama and T.T. Yanagida, Heavy gravitino in hybrid inflation, JCAP 06 (2013) 037 [arXiv:1301.6281] [INSPIRE].ADSGoogle Scholar
  142. [142]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  143. [143]
    C. Brenner Mariotto and M. Rodriguez, Investigating gluino production at the LHC, Braz. J. Phys. 38 (2008) 503 [arXiv:0805.2395] [INSPIRE].ADSGoogle Scholar
  144. [144]
    M.R. Kauth, J.H. Kuhn, P. Marquard and M. Steinhauser, Gluino Pair Production at the LHC: The Threshold, Nucl. Phys. B 857 (2012) 28 [arXiv:1108.0361] [INSPIRE].ADSGoogle Scholar
  145. [145]
    D. Miller, A. Morais and P. Pandita, Constraining Grand Unification using first and second generation sfermions, Phys. Rev. D 87 (2013) 015007 [arXiv:1208.5906] [INSPIRE].ADSGoogle Scholar
  146. [146]
    H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt{s}=10 \) TeV and 14-TeV without and with missing E(T), JHEP 09 (2009) 063 [arXiv:0907.1922] [INSPIRE].ADSGoogle Scholar
  147. [147]
    O.S. Bruning et al., LHC luminosity and energy upgrade: A feasibility study, CERN-LHC-PROJECT-REPORT-626.
  148. [148]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowU.K.

Personalised recommendations