Journal of High Energy Physics

, 2013:223 | Cite as

A new model of holographic QCD and chiral condensate in dense matter

  • Shigenori Seki
  • Sang-Jin Sin


We consider the model of holographic QCD with asymptotic freedom and gluon condensation in its vacuum. It consists of the color D4-branes and D0-branes as a background and the flavor D8-branes as a probe. By taking a specific field theory limit, the effective coupling decreases. We then introduce the uniformly distributed baryons in terms of the baryon vertices and study the density dependence of chiral condensate, which is evaluated using the worldsheet instanton method. In the confined phase, the chiral condensate as a function of density monotonically decreases in high baryon density. Such behavior is in agreement with the expectation, while in extremely low density it increases. We attribute this anomaly to the incorrect approximation of uniformity in very low density. In the deconfined phase the chiral condensate monotonically decreases in the whole region of density.


Gauge-gravity correspondence Holography and quark-gluon plasmas 


  1. [1]
    G. Brown and M. Rho, Scaling effective lagrangians in a dense medium, Phys. Rev. Lett. 66 (1991) 2720 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    E. Witten, Baryons and branes in Anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSGoogle Scholar
  8. [8]
    O. Bergman, G. Lifschytz and M. Lippert, Holographic nuclear physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K.-Y. Kim, S.-J. Sin and I. Zahed, Dense hadronic matter in holographic QCD, hep-th/0608046 [INSPIRE].
  10. [10]
    K.-Y. Kim, S.-J. Sin and I. Zahed, The chiral model of Sakai-Sugimoto at finite baryon density, JHEP 01 (2008) 002 [arXiv:0708.1469] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K.-Y. Kim, S.-J. Sin and I. Zahed, Dense holographic QCD in the Wigner-Seitz approximation, JHEP 09 (2008) 001 [arXiv:0712.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Nakamura, Y. Seo, S.-J. Sin and K. Yogendran, A new phase at finite quark density from AdS/CFT, J. Korean Phys. Soc. 52 (2008) 1734 [hep-th/0611021] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Seo and S.-J. Sin, Baryon mass in medium with Holographic QCD, JHEP 04 (2008) 010 [arXiv:0802.0568] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Edalati and J.F. Vazquez-Poritz, Chiral condensates in finite density holographic NJLS model from string worldsheets, arXiv:0906.5336 [INSPIRE].
  15. [15]
    S. Seki and S.-J. Sin, Chiral condensate in holographic QCD with baryon density, JHEP 08 (2012) 009 [arXiv:1206.5897] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Hashimoto, T. Hirayama and A. Miwa, Holographic QCD and pion mass, JHEP 06 (2007) 020 [hep-th/0703024] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12 (2007) 037 [arXiv:0708.2839] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Aharony and D. Kutasov, Holographic duals of long open strings, Phys. Rev. D 78 (2008) 026005 [arXiv:0803.3547] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    K. Hashimoto, T. Hirayama, F.-L. Lin and H.-U. Yee, Quark mass deformation of holographic massless QCD, JHEP 07 (2008) 089 [arXiv:0803.4192] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Dhar and P. Nag, Tachyon condensation and quark mass in modified Sakai-Sugimoto model, Phys. Rev. D 78 (2008) 066021 [arXiv:0804.4807] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Seki, Intersecting D4-branes model of holographic QCD and tachyon condensation, JHEP 07 (2010) 091 [arXiv:1003.2971] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  24. [24]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetMATHGoogle Scholar
  25. [25]
    H. Liu and A.A. Tseytlin, D3-brane D instanton configuration and N = 4 super-YM theory in constant selfdual background, Nucl. Phys. B 553 (1999) 231 [hep-th/9903091] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    M. Cvetič and A.A. Tseytlin, Nonextreme black holes from nonextreme intersecting M-branes, Nucl. Phys. B 478 (1996) 181 [hep-th/9606033] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.S. Costa, Composite M-branes, Nucl. Phys. B 490 (1997) 202 [hep-th/9609181] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    I.Y. Aref’eva, K. Viswanathan and I. Volovich, p-brane solutions in diverse dimensions, Phys. Rev. D 55 (1997) 4748 [hep-th/9609225] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    M.S. Costa, Black composite M-branes, Nucl. Phys. B 495 (1997) 195 [hep-th/9610138] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I. Aref’eva and A. Volovich, Composite p-branes in diverse dimensions, Class. Quant. Grav. 14 (1997) 2991 [hep-th/9611026] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  31. [31]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    J. Barbon and A. Pasquinucci, Aspects of instanton dynamics in AdS/CFT duality, Phys. Lett. B 458 (1999) 288 [hep-th/9904190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    K. Suzuki, D0-D4 system and QCD 3+1, Phys. Rev. D 63 (2001) 084011 [hep-th/0001057] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Wu, Z. Xiao and D. Zhou, Sakai-Sugimoto model in D0-D4 background, arXiv:1304.2111 [INSPIRE].
  35. [35]
    S. Seki and J. Sonnenschein, Comments on baryons in holographic QCD, JHEP 01 (2009) 053 [arXiv:0810.1633] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Center for Quantum Spacetime (CQUeST)Sogang UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsHanyang UniversitySeoulRepublic of Korea

Personalised recommendations