# Structure constants of *β* deformed super Yang-Mills

- 44 Downloads
- 2 Citations

## Abstract

We study the structure constants of the \( \mathcal{N}=1 \) beta deformed theory perturbatively and at strong coupling. We show that the planar one loop corrections to the structure constants of single trace gauge invariant operators in the scalar sector is determined by the anomalous dimension Hamiltonian. This result implies that 3 point functions of the chiral primaries of the theory do not receive corrections at one loop. We then studythe structure constants at strong coupling using the Lunin-Maldacena geometry. We explicitly construct the supergravity mode dual to the chiral primary with three equal U(1) R-charges in the Lunin-Maldacena geometry. We show that the 3 point function of this supergravity mode with semi-classical states representing two other similar chiral primary states but with large U(1) charges to be independent of the beta deformation and identical to that found in the *AdS* _{5} *× S* ^{5} geometry. This together with the one-loop result indicate that these structure constants are protected by a non-renormalization theorem. We also show that three point function of U(1) R-currents with classical massive strings is proportional to the R-charge carried by the string solution. This is in accordance with the prediction of the R-symmetry Ward identity.

## Keywords

Supersymmetric gauge theory Gauge-gravity correspondence AdS-CFT Correspondence## References

- [1]N. Beisert et al.,
*Review of AdS/CFT integrability: an overview*,*Lett. Math. Phys.***99**(2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [2]K. Okuyama and L.-S. Tseng,
*Three-point functions in N*= 4*SYM theory at one-loop*,*JHEP***08**(2004) 055 [hep-th/0404190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [3]R. Roiban and A. Volovich,
*Yang-Mills correlation functions from integrable spin chains*,*JHEP***09**(2004) 032 [hep-th/0407140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [4]L.F. Alday, J.R. David, E. Gava and K. Narain,
*Structure constants of planar N*= 4*Yang-Mills at one loop*,*JHEP***09**(2005) 070 [hep-th/0502186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [5]S. Lee, S. Minwalla, M. Rangamani and N. Seiberg,
*Three point functions of chiral operators in D*= 4*, N*= 4*SYM at large-N*,*Adv. Theor. Math. Phys.***2**(1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetMATHGoogle Scholar - [6]R.A. Janik, P. Surowka and A. Wereszczynski,
*On correlation functions of operators dual to classical spinning string states*,*JHEP***05**(2010) 030 [arXiv:1002.4613] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [7]E. Buchbinder and A. Tseytlin,
*On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT*,*JHEP***08**(2010) 057 [arXiv:1005.4516] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [8]K. Zarembo,
*Holographic three-point functions of semiclassical states*,*JHEP***09**(2010) 030 [arXiv:1008.1059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [9]M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos,
*On three-point correlation functions in the gauge/gravity duality*,*JHEP***11**(2010) 141 [arXiv:1008.1070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [10]R. Roiban and A. Tseytlin,
*On semiclassical computation of*3*-point functions of closed string vertex operators in AdS*_{5}*× S*^{5},*Phys. Rev.***D 82**(2010) 106011 [arXiv:1008.4921] [INSPIRE].ADSGoogle Scholar - [11]S. Ryang,
*Correlators of vertex operators for circular strings with winding numbers in AdS*_{5}*× S*^{5},*JHEP***01**(2011) 092 [arXiv:1011.3573] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [12]J. Escobedo, N. Gromov, A. Sever and P. Vieira,
*Tailoring three-point functions and integrability*,*JHEP***09**(2011) 028 [arXiv:1012.2475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [13]J. Escobedo, N. Gromov, A. Sever and P. Vieira,
*Tailoring three-point functions and integrability II. Weak/strong coupling match*,*JHEP***09**(2011) 029 [arXiv:1104.5501] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [14]O. Foda,
*N*= 4*SYM structure constants as determinants*,*JHEP***03**(2012) 096 [arXiv:1111.4663] [INSPIRE].ADSGoogle Scholar - [15]N. Gromov and P. Vieira,
*Tailoring three-point functions and integrability IV. Theta-morphism*, arXiv:1205.5288 [INSPIRE]. - [16]A. Bissi, G. Grignani and A. Zayakin,
*The*SO(6)*scalar product and three-point functions from integrability*, arXiv:1208.0100 [INSPIRE]. - [17]F. Elmetti, A. Mauri, S. Penati and A. Santambrogio,
*Conformal invariance of the planar beta-deformed N*= 4*SYM theory requires beta real*,*JHEP***01**(2007) 026 [hep-th/0606125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [18]F. Elmetti, A. Mauri, S. Penati, A. Santambrogio and D. Zanon,
*Real versus complex β-deformation of the N*= 4*planar super Yang-Mills theory*,*JHEP***10**(2007) 102 [arXiv:0705.1483] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [19]O. Lunin and J.M. Maldacena,
*Deforming field theories with*U(1)*×*U(1)*global symmetry and their gravity duals*,*JHEP***05**(2005) 033 [hep-th/0502086] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [20]S. Frolov, R. Roiban and A.A. Tseytlin,
*Gauge-string duality for (non)supersymmetric deformations of N*= 4*super Yang-Mills theory*,*Nucl. Phys.***B 731**(2005) 1 [hep-th/0507021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [21]N. Beisert and R. Roiban,
*Beauty and the twist: the Bethe ansatz for twisted N*= 4*SYM*,*JHEP***08**(2005) 039 [hep-th/0505187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [22]N. Gromov and F. Levkovich-Maslyuk,
*Y-system and β-deformed N*= 4*super-Yang-Mills*,*J. Phys.***A 44**(2011) 015402 [arXiv:1006.5438] [INSPIRE].MathSciNetADSGoogle Scholar - [23]F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon,
*Finite-size effects in the superconformal beta-deformed N*= 4*SYM*,*JHEP***08**(2008) 057 [arXiv:0806.2103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [24]G. Arutyunov, M. de Leeuw and S.J. van Tongeren,
*Twisting the mirror TBA*,*JHEP***02**(2011) 025 [arXiv:1009.4118] [INSPIRE].ADSGoogle Scholar - [25]C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie,
*TBA, NLO Lüscher correction and double wrapping in twisted AdS/CFT*,*JHEP***12**(2011) 059 [arXiv:1108.4914] [INSPIRE].ADSCrossRefGoogle Scholar - [26]D. Berenstein and R.G. Leigh,
*Discrete torsion, AdS/CFT and duality*,*JHEP***01**(2000) 038 [hep-th/0001055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [27]D. Berenstein, V. Jejjala and R.G. Leigh,
*Marginal and relevant deformations of N*= 4*field theories and noncommutative moduli spaces of vacua*,*Nucl. Phys.***B 589**(2000) 196 [hep-th/0005087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [28]D.Z. Freedman and U. Gürsoy,
*Comments on the beta-deformed N*= 4*SYM theory*,*JHEP***11**(2005) 042 [hep-th/0506128] [INSPIRE].ADSCrossRefGoogle Scholar - [29]S. Penati, A. Santambrogio and D. Zanon,
*Two-point correlators in the beta-deformed N*= 4*SYM at the next-to-leading order*,*JHEP***10**(2005) 023 [hep-th/0506150] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [30]A. Mauri, S. Penati, A. Santambrogio and D. Zanon,
*Exact results in planar N*= 1*superconformal Yang-Mills theory*,*JHEP***11**(2005) 024 [hep-th/0507282] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [31]G. Georgiou, B.-H. Lee and C. Park,
*Correlators of massive string states with conserved currents*,*JHEP***03**(2013) 167 [arXiv:1301.5092] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [32]R.G. Leigh and M.J. Strassler,
*Exactly marginal operators and duality in four-dimensional N*= 1*supersymmetric gauge theory*,*Nucl. Phys.***B 447**(1995) 95 [hep-th/9503121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [33]J. Fokken, C. Sieg and M. Wilhelm,
*Non-conformality of γ*_{i}*-deformed N*= 4*SYM theory*, arXiv:1308.4420 [INSPIRE]. - [34]G. Georgiou, V.L. Gili and R. Russo,
*Operator mixing and three-point functions in N*= 4*SYM*,*JHEP***10**(2009) 009 [arXiv:0907.1567] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [35]G. Georgiou, V. Gili, A. Grossardt and J. Plefka,
*Three-point functions in planar N*= 4*super Yang-Mills theory for scalar operators up to length five at the one-loop order*,*JHEP***04**(2012) 038 [arXiv:1201.0992] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [36]J. Plefka and K. Wiegandt,
*Three-point functions of twist-two operators in N*= 4*SYM at one loop*,*JHEP***10**(2012) 177 [arXiv:1207.4784] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [37]P.S. Howe, E. Sokatchev and P.C. West,
*Three point functions in N*= 4*Yang-Mills*,*Phys. Lett.***B 444**(1998) 341 [hep-th/9808162] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [38]A. Basu, M.B. Green and S. Sethi,
*Some systematics of the coupling constant dependence of N*= 4*Yang-Mills*,*JHEP***09**(2004) 045 [hep-th/0406231] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [39]M. Baggio, J. de Boer and K. Papadodimas,
*A non-renormalization theorem for chiral primary 3-point functions*,*JHEP***07**(2012) 137 [arXiv:1203.1036] [INSPIRE].ADSCrossRefGoogle Scholar - [40]K. Madhu and S. Govindarajan,
*Chiral primaries in the Leigh-Strassler deformed N*= 4*SYM: a perturbative study*,*JHEP***05**(2007) 038 [hep-th/0703020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [41]C. Ahn and P. Bozhilov,
*Three-point correlation function of giant magnons in the Lunin-Maldacena background*,*Phys. Rev.***D 84**(2011) 126011 [arXiv:1106.5656] [INSPIRE].ADSGoogle Scholar - [42]D. Arnaudov and R. Rashkov,
*Three-point correlators: examples from Lunin-Maldacena background*,*Phys. Rev.***D 84**(2011) 086009 [arXiv:1106.4298] [INSPIRE].ADSGoogle Scholar - [43]P. Bozhilov,
*Leading finite-size effects on some three-point correlators in TsT-deformed AdS*_{5}*× S*^{5},*Phys. Rev.***D 88**(2013) 026017 [arXiv:1304.2139] [INSPIRE].ADSGoogle Scholar - [44]S. Frolov,
*Lax pair for strings in Lunin-Maldacena background*,*JHEP***05**(2005) 069 [hep-th/0503201] [INSPIRE].ADSCrossRefGoogle Scholar - [45]P. Meessen and T. Ortín,
*An*SL(2*, Z*)*multiplet of nine-dimensional type-II supergravity theories*,*Nucl. Phys.***B 541**(1999) 195 [hep-th/9806120] [INSPIRE].ADSCrossRefGoogle Scholar - [46]H. Kim, L. Romans and P. van Nieuwenhuizen,
*The mass spectrum of chiral N*= 2*D*= 10*supergravity on S*^{5},*Phys. Rev.***D 32**(1985) 389 [INSPIRE].ADSGoogle Scholar - [47]D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli,
*Correlation functions in the CFT(d)/AdS(d+1) correspondence*,*Nucl. Phys.***B 546**(1999) 96 [hep-th/9804058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [48]J. Minahan and C. Sieg,
*Four-loop anomalous dimensions in Leigh-Strassler deformations*,*J. Phys.***A 45**(2012) 305401 [arXiv:1112.4787] [INSPIRE].MathSciNetGoogle Scholar