Journal of High Energy Physics

, 2013:157 | Cite as

Flavor of gluino decay in high-scale supersymmetry



The discovery of the Higgs boson with a mass of about 125 GeV intimates us a possibility of a high-scale supersymmetry (SUSY) breaking model, where a sfermion mass scale is much higher than the electroweak scale. Although a general SUSY standard model can contribute to the low-energy flavor and/or CP-violating processes, the high-scale SUSY breaking model provides smaller signatures and therefore are less constrained, even in the presence of large flavor/CP violations of sfermions. However, a manner of gluino decay directly reflects the squark flavor structure and provides us a clue for the sfermion flavor structure. In this paper, we study the gluino decay in detail and discuss the interplay with the gluino decay and low-energy flavor and CP observation.


Supersymmetry Phenomenology 


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
  4. [4]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].
  6. [6]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Dine and D. MacIntire, Supersymmetry, naturalness and dynamical supersymmetry breaking, Phys. Rev. D 46 (1992) 2594 [hep-ph/9205227] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories, JHEP 04 (2000) 009 [hep-th/9911029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    P. Binetruy, M.K. Gaillard and B.D. Nelson, One loop soft supersymmetry breaking terms in superstring effective theories, Nucl. Phys. B 604 (2001) 32 [hep-ph/0011081] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  25. [25]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible signals of wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M.R. Buckley, L. Randall and B. Shuve, LHC searches for non-chiral weakly charged multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Asai, T. Moroi, K. Nishihara and T.T. Yanagida, Testing the anomaly mediation at the LHC, Phys. Lett. B 653 (2007) 81 [arXiv:0705.3086] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Asai, T. Moroi and T.T. Yanagida, Test of anomaly mediation at the LHC, Phys. Lett. B 664 (2008) 185 [arXiv:0802.3725] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Asai et al., Mass measurement of the decaying bino at the LHC, Phys. Lett. B 672 (2009) 339 [arXiv:0807.4987] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Hisano, S. Matsumoto, O. Saito and M. Senami, Heavy wino-like neutralino dark matter annihilation into antiparticles, Phys. Rev. D 73 (2006) 055004 [hep-ph/0511118] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Hisano, K. Ishiwata and N. Nagata, Direct search of dark matter in high-scale supersymmetry, Phys. Rev. D 87 (2013) 035020 [arXiv:1210.5985] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Moroi and K. Nakayama, Wino LSP detection in the light of recent Higgs searches at the LHC, Phys. Lett. B 710 (2012) 159 [arXiv:1112.3123] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, arXiv:1307.4082 [INSPIRE].
  41. [41]
    J. Fan and M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter, arXiv:1307.4400 [INSPIRE].
  42. [42]
    K.I. Izawa, Y. Nomura, K. Tobe and T. Yanagida, Direct transmission models of dynamical supersymmetry breaking, Phys. Rev. D 56 (1997) 2886 [hep-ph/9705228] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y. Nomura and K. Tobe, Phenomenological aspects of a direct transmission model of dynamical supersymmetry breaking with the gravitino mass m 3/2< 1 keV, Phys. Rev. D 58 (1998) 055002 [hep-ph/9708377] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Z. Komargodski and D. Shih, Notes on SUSY and R-symmetry breaking in Wess-Zumino models, JHEP 04 (2009) 093 [arXiv:0902.0030] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Shirai, M. Yamazaki and K. Yonekura, Aspects of non-minimal gauge mediation, JHEP 06 (2010) 056 [arXiv:1003.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Ibe and R. Sato, A 125 GeV Higgs boson mass and gravitino dark matter in R-invariant direct gauge mediation, Phys. Lett. B 717 (2012) 197 [arXiv:1204.3499] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Saito and S. Shirai, Gravitational wave probe of high supersymmetry breaking scale, Phys. Lett. B 713 (2012) 237 [arXiv:1201.6589] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Gambino, G.F. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Sato, S. Shirai and K. Tobioka, Gluino decay as a probe of high scale supersymmetry breaking, JHEP 11 (2012) 041 [arXiv:1207.3608] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Arvanitaki, C. Davis, P.W. Graham, A. Pierce and J.G. Wacker, Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M.E. Machacek and M.T. Vaughn, Fermion and Higgs masses as probes of unified theories, Phys. Lett. B 103 (1981) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    ATLAS collaboration, Search for charginos nearly mass-degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-069 (2013).
  55. [55]
    R. Barbieri, G. Gamberini, G.F. Giudice and G. Ridolfi, Constraining supergravity models from gluino production, Nucl. Phys. B 301 (1988) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. McKeen, M. Pospelov and A. Ritz, EDM signatures of PeV-scale superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].ADSGoogle Scholar
  59. [59]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    UTfit collaboration, A. Bevan et al., The UTfit collaboration average of D meson mixing data: spring 2012, JHEP 10 (2012) 068 [arXiv:1206.6245] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
  62. [62]
    J. Hisano and Y. Shimizu, Hadronic EDMs induced by the strangeness and constraints on supersymmetric CP phases, Phys. Rev. D 70 (2004) 093001 [hep-ph/0406091] [INSPIRE].ADSGoogle Scholar
  63. [63]
    C. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    W.C. Griffith et al., Improved limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.L. Hewett, B. Lillie, M. Masip and T.G. Rizzo, Signatures of long-lived gluinos in split supersymmetry, JHEP 09 (2004) 070 [hep-ph/0408248] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Cheung and W.-Y. Keung, Split supersymmetry, stable gluino and gluinonium, Phys. Rev. D 71 (2005) 015015 [hep-ph/0408335] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Bartl et al., Flavour violating gluino three-body decays at LHC, Phys. Rev. D 84 (2011) 115026 [arXiv:1107.2775] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [INSPIRE].ADSGoogle Scholar
  69. [69]
    T. Ito, K. Nakaji and S. Shirai, Identifying the origin of longevity of metastable stau at the LHC, Phys. Lett. B 706 (2012) 314 [arXiv:1104.2101] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R. Sato, S. Shirai and K. Tobioka, in preparation.Google Scholar
  71. [71]
    T. Moroi and M. Nagai, Probing supersymmetric model with heavy sfermions using leptonic flavor and CP-violations, Phys. Lett. B 723 (2013) 107 [arXiv:1303.0668] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    T. Moroi, M. Nagai and T.T. Yanagida, Lepton flavor violations in high-scale SUSY with right-handed neutrinos, arXiv:1305.7357 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Ryosuke Sato
    • 1
  • Satoshi Shirai
    • 2
  • Kohsaku Tobioka
    • 3
    • 4
  1. 1.Institute of Particle and Nuclear StudiesHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
  2. 2.Department of Physics, Berkeley Center for Theoretical Physics, and Theoretical Physics Group, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyU.S.A.
  3. 3.Department of PhysicsUniversity of TokyoTokyoJapan
  4. 4.Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced StudyUniversity of TokyoKashiwaJapan

Personalised recommendations