Advertisement

Journal of High Energy Physics

, 2013:139 | Cite as

A link representation for gravity amplitudes

Article

Abstract

We derive a link representation for all tree amplitudes in \( \mathcal{N}=8 \) supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL(k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.

Keywords

Scattering Amplitudes Classical Theories of Gravity 

References

  1. [1]
    F. Cachazo and D. Skinner, Gravity from rational curves, Phys. Rev. Lett. 110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Cachazo and Y. Geyer, Atwistor stringinspired formula for tree-level scattering amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
  3. [3]
    A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE].
  4. [4]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    M. Spradlin and A. Volovich, From twistor string theory to recursion relations, Phys. Rev. D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    L. Dolan and P. Goddard, Gluon tree amplitudes in open twistor string theory, JHEP 12 (2009) 032 [arXiv:0909.0499] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP 03 (2010) 110 [arXiv:0903.2110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    L. Dolan and P. Goddard, General split helicity gluon tree amplitudes in open twistor string theory, JHEP 05 (2010) 044 [arXiv:1002.4852] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    L. Dolan and P. Goddard, Complete equivalence between gluon tree amplitudes in twistor string theory and in gauge theory, JHEP 06 (2012) 030 [arXiv:1111.0950] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. Nandan, A. Volovich and C. Wen, A Grassmannian etude in NMHV minors, JHEP 07 (2010) 061 [arXiv:0912.3705] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B. Feng and S. He, Graphs, determinants and gravity amplitudes, JHEP 10 (2012) 121 [arXiv:1207.3220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D. Nguyen, M. Spradlin, A. Volovich and C. Wen, The tree formula for MHV graviton amplitudes, JHEP 07 (2010) 045 [arXiv:0907.2276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikPotsdamGermany

Personalised recommendations