Advertisement

Journal of High Energy Physics

, 2013:137 | Cite as

Doubly-fluctuating BPS solutions in six dimensions

  • Benjamin E. Niehoff
  • Nicholas P. Warner
Open Access
Article

Abstract

We analyze the BPS solutions of minimal supergravity coupled to an anti-self-dual tensor multiplet in six dimensions and find solutions that fluctuate non-trivially as a function of two variables. We consider families of solutions coming from KKM monopoles fibered over Gibbons-Hawking metrics or, equivalently, non-trivial T 2 fibrations over an \( {{\mathbb{R}}^3} \) base. We find smooth microstate geometries that depend upon many functions of one variable, but each such function depends upon a different direction inside the T 2 so that the complete solution depends non-trivially upon the whole T 2. We comment on the implications of our results for the construction of a general superstratum.

Keywords

Black Holes in String Theory D-branes M-Theory 

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  4. [4]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    B.D. Chowdhury and A. Virmani, Modave Lectures on Fuzzballs and Emission from the D1-D5 System, arXiv:1001.1444 [INSPIRE].
  9. [9]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    G. Arutyunov, A. Pankiewicz and S. Theisen, Cubic couplings in D = 6 N = 4b supergravity on AdS 3 × S 3, Phys. Rev. D 63 (2001) 044024 [hep-th/0007061] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].ADSGoogle Scholar
  12. [12]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP 04 (2007) 023 [hep-th/0611171] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    I. Bena, C.-W. Wang and N.P. Warner, The Foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 Multicenter Solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, A bound on the entropy of supergravity?, JHEP 02 (2010) 062 [arXiv:0906.0011] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric Solutions in Six Dimensions: A Linear Structure, JHEP 03 (2012) 084 [arXiv:1110.2781] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy Enhancement and Black Hole Microstates, Phys. Rev. Lett. 105 (2010) 231301 [arXiv:0804.4487] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An Infinite-Dimensional Family of Black-Hole Microstate Geometries, JHEP 03 (2011) 022 [Erratum ibid. 1104 (2011) 059] [arXiv:1006.3497] [INSPIRE].
  21. [21]
    I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, Double Supertube Bubble, JHEP 10 (2011) 116 [arXiv:1107.2650] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five- dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    J.B. Gutowski, D. Martelli and H.S. Reall, All Supersymmetric solutions of minimal supergravity in six dimensions, Class. Quant. Grav. 20 (2003) 5049 [hep-th/0306235] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  24. [24]
    M. Cariglia and O.A. Mac Conamhna, The General form of supersymmetric solutions of N=(1,0) U(1) and SU(2) gauged supergravities in six-dimensions, Class. Quant. Grav. 21 (2004) 3171 [hep-th/0402055] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  25. [25]
    O. Lunin, Adding momentum to D-1 - D-5 system, JHEP 04 (2004) 054 [hep-th/0404006] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    B.E. Niehoff, O. Vasilakis and N.P. Warner, Multi-Superthreads and Supersheets, JHEP 04 (2013) 046 [arXiv:1203.1348] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    N. Bobev, B.E. Niehoff and N.P. Warner, New Supersymmetric Bubbles on AdS 3 × S 3, JHEP 10 (2012) 013 [arXiv:1204.1972] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    O. Vasilakis, Corrugated Multi-Supersheets, JHEP 07 (2013) 008 [arXiv:1302.1241] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    S. Giusto, R. Russo and D. Turton, New D1-D5-P geometries from string amplitudes, JHEP 11 (2011) 062 [arXiv:1108.6331] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Giusto, J.F. Morales and R. Russo, D1-D5 microstate geometries from string amplitudes, JHEP 03 (2010) 130 [arXiv:0912.2270] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Giusto and R. Russo, Adding new hair to the 3-charge black ring, Class. Quant. Grav. 29 (2012) 085006 [arXiv:1201.2585] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Giusto and R. Russo, Perturbative superstrata, Nucl. Phys. B 869 (2013) 164 [arXiv:1211.1957] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    M. Nakahara, Geometry, Topology and Physics, Taylor & Francis, Boca Raton U.S.A. (2003).MATHGoogle Scholar
  35. [35]
    I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity Solutions from Floating Branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in Bubbling Backgrounds: Born-Infeld Meets Supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    S. Giusto and S.D. Mathur, Geometry of D1-D5-P bound states, Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesU.S.A.
  2. 2.Institut de Physique Théorique, CEA Saclay, CNRS-URA 2306Gif sur YvetteFrance
  3. 3.Institut des Hautes Etudes Scientifiques Le Bois-MarieBures-sur-YvetteFrance

Personalised recommendations