Advertisement

Journal of High Energy Physics

, 2013:134 | Cite as

Measuring extended Higgs sectors as a consistent free couplings model

  • David López-Val
  • Tilman Plehn
  • Michael Rauch
Article

Abstract

Extended Higgs sectors appear in many models for physics beyond the Standard Model. Current Higgs measurements at the LHC are starting to significantly constrain them. We study their Higgs coupling patterns at tree level as well as including quantum corrections. Our benchmarks include a dark singlet-doublet extension and several twodoublet setups. Using SFitter we translate the current Higgs coupling measurements for one light Higgs state into their respective parameter spaces. Finally, we show how twoHiggs-doublet models can serve as a consistent ultraviolet completion of an assumed single Standard-Model-like Higgs boson with free couplings.

Keywords

Higgs Physics Beyond Standard Model 

References

  1. [1]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].ADSGoogle Scholar
  2. [2]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    M. Spira and P.M. Zerwas, Electroweak symmetry breaking and Higgs physics, Lect. Notes Phys. 512 (1998) 161 [hep-ph/9803257] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Plehn, Lectures on LHC physics, Lect. Notes Phys. 844 (2012) 1 [arXiv:0910.4182] [INSPIRE].Google Scholar
  7. [7]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  8. [8]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06(2013)081[arXiv:1303.4571][INSPIRE].ADSGoogle Scholar
  10. [10]
    CMS collaboration, CMS at the high-energy frontier. Contribution to the update of the european strategy for particle physics, CMS-NOTE-2012-006 (2012).
  11. [11]
    ATLAS collaboration, Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of ATLAS data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2011-161 (2011).
  12. [12]
    ATLAS collaboration, Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair using up to 4.7 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-015 (2012).
  13. [13]
    ATLAS collaboration, Search for the standard model Higgs boson in Hττ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).
  14. [14]
    ATLAS collaboration, Search for the standard model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).
  15. [15]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  16. [16]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  17. [17]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (∗)ℓνℓν decay channel with the ATLAS detector using 25fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
  18. [18]
    CMS collaboration, Search for the standard model Higgs boson in the decay channel HZZ →4 leptons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108(2012)111804 [arXiv:1202.1997] [INSPIRE].ADSGoogle Scholar
  19. [19]
    CMS collaboration, 1Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044 (2012).
  20. [20]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
  21. [21]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  22. [22]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
  23. [23]
    CMS collaboration, Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-004 (2013).
  24. [24]
    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for LHCp 2013, CMS-PAS-HIG-13-012 (2013).
  25. [25]
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].Google Scholar
  28. [28]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06(2012)134[arXiv:1204.4817][INSPIRE].ADSGoogle Scholar
  30. [30]
    F. Bonnet, M. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012)123 [arXiv:1207.1693] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Espinosa, C. Grojean, M. Mühlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012)045 [arXiv:1207.1717] [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M. Gónzalez-García, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  36. [36]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M. Gónzalez-García, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].ADSGoogle Scholar
  38. [38]
    N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].ADSGoogle Scholar
  39. [39]
    F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the standard model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].ADSGoogle Scholar
  42. [42]
    E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs to electroweak gauge bosons from LEP and LHC, Phys. Rev. D 87 (2013), no. 3 033001 [arXiv:1211.1320] [INSPIRE].
  43. [43]
    G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].Google Scholar
  44. [44]
    C. Cheung, S.D. McDermott and K.M. Zurek, Inspecting the Higgs for new weakly interacting particles, JHEP 04 (2013) 074 [arXiv:1302.0314] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision (higgcision) era begins, JHEP 05 (2013)134 [arXiv:1302.3794] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].
  47. [47]
    W.-F. Chang, W.-P. Pan and F. Xu, An effective gauge-Higgs operators analysis of new physics associated with the Higgs, Phys. Rev. D 88 (2013) 033004 [arXiv:1303.7035] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, arXiv:1303.6591 [INSPIRE].
  49. [49]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSGoogle Scholar
  51. [51]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  52. [52]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  53. [53]
    M. Dührssen, Measurement of Higgs boson parameters at the LHC, Czech. J. Phys. 55 (2005) B145 [INSPIRE].Google Scholar
  54. [54]
    M. Dührssen, Standard model Higgs searches at CERN, Eur. Phys. J. C 33 (2004) S686 [INSPIRE].Google Scholar
  55. [55]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, arXiv:1305.1933 [INSPIRE].
  56. [56]
    LHC Higgs Cross Section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].
  57. [57]
    G. Passarino, NLO inspired effective lagrangians for Higgs physics, Nucl. Phys. B 868 (2013)416 [arXiv:1209.5538] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings at a linear collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  60. [60]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].ADSGoogle Scholar
  62. [62]
    E. Pontón and L. Randall, TeV scale singlet dark matter, JHEP 04 (2009) 080 [arXiv:0811.1029] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Das, P.J. Fox, A. Kumar and N. Weiner, The dark side of the electroweak phase transition, JHEP 11 (2010) 108 [arXiv:0910.1262] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H. Tytgat, A light scalar WIMP through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595] [INSPIRE].ADSGoogle Scholar
  66. [66]
    O. Lebedev and H.M. Lee, Higgs portal inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].ADSGoogle Scholar
  67. [67]
    B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10 fb −1 at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Biswas and D. Majumdar, The real gauge singlet scalar extension of standard model: a possible candidate of cold dark matter, Pramana 80 (2013) 539 [arXiv:1102.3024] [INSPIRE].ADSGoogle Scholar
  69. [69]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  70. [70]
    X. Chu, T. Hambye and M.H. Tytgat, The four basic ways of creating dark matter through a portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].ADSGoogle Scholar
  71. [71]
    L. López-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSGoogle Scholar
  72. [72]
    I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].ADSGoogle Scholar
  73. [73]
    F. Bazzocchi and M. Fabbrichesi, A simple inert model solves the little hierarchy problem and provides a dark matter candidate, Eur. Phys. J. C 73 (2013) 2303 [arXiv:1207.0951] [INSPIRE].ADSGoogle Scholar
  74. [74]
    M. Bowen, Y. Cui and J.D. Wells, Narrow trans-TeV Higgs bosons and Hhh decays: two LHC search paths for a hidden sector Higgs boson, JHEP 03 (2007) 036 [hep-ph/0701035] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Gopalakrishna, S. Jung and J.D. Wells, Higgs boson decays to four fermions through an abelian hidden sector, Phys. Rev. D 78 (2008) 055002 [arXiv:0801.3456] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011)298 [arXiv:1106.3097] [INSPIRE].ADSGoogle Scholar
  77. [77]
    C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].ADSGoogle Scholar
  78. [78]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Gursey, P. Ramond and P. Sikivie, A universal gauge theory model based on E 6, Phys. Lett. B 60 (1976) 177 [INSPIRE].ADSGoogle Scholar
  80. [80]
    Y. Achiman and B. Stech, Quark lepton symmetry and mass scales in an E 6 unified gauge model, Phys. Lett. B 77 (1978) 389 [INSPIRE].ADSGoogle Scholar
  81. [81]
    Q. Shafi, E 6 as a unifying gauge symmetry, Phys. Lett. B 79 (1978) 301 [INSPIRE].ADSGoogle Scholar
  82. [82]
    R. Barbieri, D.V. Nanopoulos and A. Masiero, Hierarchical fermion masses in E 6, Phys. Lett. B 104 (1981) 194 [INSPIRE].ADSGoogle Scholar
  83. [83]
    H. Georgi, The state of the artGauge theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].ADSGoogle Scholar
  84. [84]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975)193 [INSPIRE].MathSciNetADSGoogle Scholar
  85. [85]
    Y. Achiman and B. Stech, Topless model for grand unification, in Advanced summer institute on new phenomena in lepton and hadron physics, D.E.C. Fries and J. Wess eds., Plenum, New York U.S.A. (1979).Google Scholar
  86. [86]
    S.L. Glashow, Trinification of all elementary particle forces, in Fifth workshop on grand unification, K. Kang et al. eds., World Scientific, Singapore (1984).Google Scholar
  87. [87]
    K. Babu, X.-G. He and S. Pakvasa, Neutrino masses and proton decay modes in SU(3) × SU(3) × SU(3) trinification, Phys. Rev. D 33 (1986) 763 [INSPIRE].ADSGoogle Scholar
  88. [88]
    B. Stech, The mass of the Higgs boson in the trinification subgroup of E6, Phys. Rev. D 86 (2012)055003 [arXiv:1206.4233] [INSPIRE].ADSGoogle Scholar
  89. [89]
    B. Stech and Z. Tavartkiladze, Generation symmetry and E 6 unification, Phys. Rev. D 77 (2008)076009 [arXiv:0802.0894] [INSPIRE].ADSGoogle Scholar
  90. [90]
    B. Stech, Neutrino properties from E 6 × SO(3) × Z 2, Fortsch. Phys. 58 (2010) 692 [arXiv:1003.0581] [INSPIRE].ADSGoogle Scholar
  91. [91]
    B. Stech, Degenerate states in the scalar boson spectrum. Is the Higgs boson a twin?, arXiv:1303.6931 [INSPIRE].
  92. [92]
    R. Killick, K. Kumar and H.E. Logan, Learning what the Higgs boson is mixed with, Phys. Rev. D 88 (2013) 033015 [arXiv:1305.7236] [INSPIRE].ADSGoogle Scholar
  93. [93]
    P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [INSPIRE].ADSGoogle Scholar
  94. [94]
    V. Barger, H.E. Logan and G. Shaughnessy, Identifying extended Higgs models at the LHC, Phys. Rev. D 79 (2009) 115018 [arXiv:0902.0170] [INSPIRE].ADSGoogle Scholar
  95. [95]
    S. Kanemura, M. Kikuchi and K. Yagyu, Probing exotic Higgs sectors from the precise measurement of Higgs boson couplings, Phys. Rev. D 88 (2013) 015020 [arXiv:1301.7303] [INSPIRE].ADSGoogle Scholar
  96. [96]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSGoogle Scholar
  97. [97]
    M.S. Chanowitz and M. Golden, Higgs boson triplets with M (W ) = M (Z) cos θω, Phys. Lett. B 165 (1985) 105 [INSPIRE].ADSGoogle Scholar
  98. [98]
    J. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990)1673 [INSPIRE].ADSGoogle Scholar
  99. [99]
    J. Gunion, R. Vega and J. Wudka, Naturalness problems for ρ = 1 and other large one loop effects for a standard model Higgs sector containing triplet fields, Phys. Rev. D 43 (1991) 2322 [INSPIRE].ADSGoogle Scholar
  100. [100]
    M. Aoki and S. Kanemura, Unitarity bounds in the Higgs model including triplet fields with custodial symmetry, Phys. Rev. D 77 (2008) 095009 [arXiv:0712.4053] [INSPIRE].ADSGoogle Scholar
  101. [101]
    H.E. Logan and M.-A. Roy, Higgs couplings in a model with triplets, Phys. Rev. D 82 (2010)115011 [arXiv:1008.4869] [INSPIRE].ADSGoogle Scholar
  102. [102]
    C. Englert, E. Re and M. Spannowsky, Triplet Higgs boson collider phenomenology after the LHC, Phys. Rev. D 87 (2013) 095014 [arXiv:1302.6505] [INSPIRE].ADSGoogle Scholar
  103. [103]
    J. Hisano and K. Tsumura, Higgs boson mixes with an SU(2) septet representation, Phys. Rev. D 87 (2013) 053004 [arXiv:1301.6455] [INSPIRE].ADSGoogle Scholar
  104. [104]
    S. Choi, S. Jung and P. Ko, Implications of LHC data on 125 GeV Higgs-like boson for the standard model and its various extensions, arXiv:1307.3948 [INSPIRE].
  105. [105]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].MathSciNetADSGoogle Scholar
  106. [106]
    M.J.G. Veltman and F. Ynduráin, Radiative corrections to W W scattering, Nucl. Phys. B 325 (1989)1 [INSPIRE].ADSGoogle Scholar
  107. [107]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].ADSGoogle Scholar
  108. [108]
    O. Bahat-Treidel, Y. Grossman and Y. Rozen, Hiding the Higgs at the LHC, JHEP 05 (2007)022 [hep-ph/0611162] [INSPIRE].ADSGoogle Scholar
  109. [109]
    D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].ADSGoogle Scholar
  110. [110]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008)035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  111. [111]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].ADSGoogle Scholar
  112. [112]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  113. [113]
    E. Weihs and J. Zurita, Dark Higgs models at the 7 TeV LHC, JHEP 02 (2012) 041 [arXiv:1110.5909] [INSPIRE].ADSGoogle Scholar
  114. [114]
    G.M. Pruna and T. Robens, The Higgs Singlet extension parameter space in the light of the LHC discovery, arXiv:1303.1150 [INSPIRE].
  115. [115]
    S.K. Kang and J. Park, Unitarity constraints in the standard model with a singlet scalar field, arXiv:1306.6713 [INSPIRE].
  116. [116]
    X.-G. He and J. Tandean, Hidden Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].ADSGoogle Scholar
  117. [117]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  118. [118]
    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011 (2013).
  119. [119]
    CMS collaboration, Search for invisible Higgs produced in association with a Z boson, CMS-PAS-HIG-13-018 (2013).
  120. [120]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Status of invisible Higgs decays, Phys. Lett. B 723 (2013) 340 [arXiv:1302.5694] [INSPIRE].ADSGoogle Scholar
  121. [121]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSGoogle Scholar
  122. [122]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSGoogle Scholar
  123. [123]
    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].ADSGoogle Scholar
  124. [124]
    K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, global study of the simplest scalar phantom dark matter model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].ADSGoogle Scholar
  125. [125]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].ADSGoogle Scholar
  126. [126]
    B. Batell, D. McKeen and M. Pospelov, Singlet neighbors of the Higgs boson, JHEP 10 (2012)104 [arXiv:1207.6252] [INSPIRE].ADSGoogle Scholar
  127. [127]
    A. Drozd, B. Grzadkowski and J. Wudka, Multi-scalar-singlet extension of the standard modelThe case for dark matter and an invisible Higgs boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].ADSGoogle Scholar
  128. [128]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Addison-Wesley, Menlo-Park U.S.A. (1990).Google Scholar
  129. [129]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)1 [arXiv:1106.0034] [INSPIRE].ADSGoogle Scholar
  130. [130]
    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].ADSGoogle Scholar
  131. [131]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSGoogle Scholar
  132. [132]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984)187 [INSPIRE].ADSGoogle Scholar
  133. [133]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSGoogle Scholar
  134. [134]
    G. Burdman and C.E. Haluch, Two Higgs doublets from fermion condensation, JHEP 12 (2011)038 [arXiv:1109.3914] [INSPIRE].ADSGoogle Scholar
  135. [135]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005)229 [hep-ph/0502182] [INSPIRE].ADSGoogle Scholar
  136. [136]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007)247 [hep-ph/0512128] [INSPIRE].ADSGoogle Scholar
  137. [137]
    J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-doublet model, Phys. Rev. D 72 (2005) 095002 [hep-ph/0506227] [INSPIRE].ADSGoogle Scholar
  138. [138]
    P. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann and J.P. Silva, Geometric picture of generalized-CP and Higgs-family transformations in the two-Higgs-doublet model, Int. J. Mod. Phys. A 26 (2011) 769 [arXiv:1010.0935] [INSPIRE].ADSGoogle Scholar
  139. [139]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  140. [140]
    S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [INSPIRE].ADSGoogle Scholar
  141. [141]
    J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].ADSGoogle Scholar
  142. [142]
    A. Tranberg and B. Wu, Cold electroweak baryogenesis in the two Higgs-doublet model, JHEP 07 (2012) 087 [arXiv:1203.5012] [INSPIRE].ADSGoogle Scholar
  143. [143]
    G. Dorsch, S. Huber and J. No, A strong electroweak phase transition in the 2HDM after LHC8, JHEP 10 (2013) 029 [arXiv:1305.6610] [INSPIRE].ADSGoogle Scholar
  144. [144]
    C. Cheung and Y. Zhang, Electroweak cogenesis, JHEP 09 (2013) 002 [arXiv:1306.4321] [INSPIRE].ADSGoogle Scholar
  145. [145]
    J.-O. Gong, H.M. Lee and S.K. Kang, Inflation and dark matter in two Higgs doublet models, JHEP 04 (2012) 128 [arXiv:1202.0288] [INSPIRE].ADSGoogle Scholar
  146. [146]
    M. Aoki et al., Light charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].ADSGoogle Scholar
  147. [147]
    S. Chang, J.A. Evans and M.A. Luty, Possibility of early Higgs boson discovery in nonminimal Higgs sectors, Phys. Rev. D 84 (2011) 095030 [arXiv:1107.2398] [INSPIRE].ADSGoogle Scholar
  148. [148]
    A. Arhrib, C.-W. Chiang, D.K. Ghosh and R. Santos, Two Higgs doublet model in light of the standard model Hτ + τ search at the LHC, Phys. Rev. D 85 (2012) 115003 [arXiv:1112.5527] [INSPIRE].ADSGoogle Scholar
  149. [149]
    S. Kanemura, K. Tsumura and H. Yokoya, Multi-tau-lepton signatures at the LHC in the two Higgs doublet model, Phys. Rev. D 85 (2012) 095001 [arXiv:1111.6089] [INSPIRE].ADSGoogle Scholar
  150. [150]
    W. Mader, J.-h. Park, G.M. Pruna, D. Stöckinger and A. Straessner, LHC explores what LEP hinted at: CP-violating type-I 2HDM, JHEP 09 (2012) 125 [arXiv:1205.2692] [INSPIRE].ADSGoogle Scholar
  151. [151]
    K. Tsumura, Two Higgs doublet models at future colliders, arXiv:1305.1754 [INSPIRE].
  152. [152]
    R.V. Harlander, S. Liebler and T. Zirke, Higgs strahlung at the Large Hadron Collider in the 2-Higgs-doublet model, arXiv:1307.8122 [INSPIRE].
  153. [153]
    P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].ADSGoogle Scholar
  154. [154]
    P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].ADSGoogle Scholar
  155. [155]
    J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Implications on the heavy CP-even Higgs boson from current Higgs data, Phys. Rev. D 87 (2013), no. 3 035008 [arXiv:1211.3849] [INSPIRE].
  156. [156]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].ADSGoogle Scholar
  157. [157]
    S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].ADSGoogle Scholar
  158. [158]
    G. Burdman, C.E.F. Haluch and R.D. Matheus, Is the LHC observing the pseudo-scalar state of a two-Higgs doublet model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].ADSGoogle Scholar
  159. [159]
    A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: Implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].ADSGoogle Scholar
  160. [160]
    D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].
  161. [161]
    H. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].ADSGoogle Scholar
  162. [162]
    C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].ADSGoogle Scholar
  163. [163]
    B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].ADSGoogle Scholar
  164. [164]
    M. Krawczyk, D. Sokolowska and B. Swieżewska, 2HDM with Z 2 symmetry in light of new LHC data, J. Phys. Conf. Ser. 447 (2013) 012050 [arXiv:1303.7102] [INSPIRE].ADSGoogle Scholar
  165. [165]
    A. Barroso, P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCThe story so far, arXiv:1304.5225 [INSPIRE].
  166. [166]
    B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, arXiv:1305.0002 [INSPIRE].
  167. [167]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].ADSGoogle Scholar
  168. [168]
    O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, arXiv:1305.1649 [INSPIRE].
  169. [169]
    C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].ADSGoogle Scholar
  170. [170]
    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
  171. [171]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, arXiv:1306.2941 [INSPIRE].
  172. [172]
    Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].ADSGoogle Scholar
  173. [173]
    V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing h(125) in two Higgs doublet models at the LHC, ILC and Muon Collider, arXiv:1308.0052 [INSPIRE].
  174. [174]
    A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013)053 [arXiv:1302.4022] [INSPIRE].ADSGoogle Scholar
  175. [175]
    W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].ADSGoogle Scholar
  176. [176]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  177. [177]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  178. [178]
    D. Majumdar and A. Ghosal, Dark matter candidate in a heavy Higgs modelDirect detection rates, Mod. Phys. Lett. A 23 (2008) 2011 [hep-ph/0607067] [INSPIRE].ADSGoogle Scholar
  179. [179]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].ADSGoogle Scholar
  180. [180]
    M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Significant gamma lines from inert Higgs dark matter, Phys. Rev. Lett. 99 (2007) 041301 [astro-ph/0703512] [INSPIRE].ADSGoogle Scholar
  181. [181]
    P. Agrawal, E.M. Dolle and C.A. Krenke, Signals of inert doublet dark matter in neutrino telescopes, Phys. Rev. D 79 (2009) 015015 [arXiv:0811.1798] [INSPIRE].ADSGoogle Scholar
  182. [182]
    E. Nezri, M.H. Tytgat and G. Vertongen, e + and \( \overline{p} \) from inert doublet model dark matter, JCAP 04 (2009) 014 [arXiv:0901.2556] [INSPIRE].ADSGoogle Scholar
  183. [183]
    E.M. Dolle and S. Su, The inert dark matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].ADSGoogle Scholar
  184. [184]
    C. Arina, F.-S. Ling and M.H. Tytgat, IDM and iDM or the inert doublet model and inelastic dark matter, JCAP 10 (2009) 018 [arXiv:0907.0430] [INSPIRE].ADSGoogle Scholar
  185. [185]
    A. Goudelis, B. Herrmann and O. Stal, Dark matter in the inert doublet model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].ADSGoogle Scholar
  186. [186]
    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].ADSGoogle Scholar
  187. [187]
    S. Su and B. Thomas, The LHC discovery potential of a leptophilic Higgs, Phys. Rev. D 79 (2009)095014 [arXiv:0903.0667] [INSPIRE].ADSGoogle Scholar
  188. [188]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].ADSGoogle Scholar
  189. [189]
    S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches, Phys. Lett. B 704 (2011)303 [arXiv:1108.3297] [INSPIRE].ADSGoogle Scholar
  190. [190]
    F. Mahmoudi and T. Hurth, Flavour data constraints on new physics and SuperIso, PoS(ICHEP2012)324 [arXiv:1211.2796] [INSPIRE].
  191. [191]
    H. Neufeld, W. Grimus and G. Ecker, Generalized CP invariance, neutral flavor conservation and the structure of the mixing matrix, Int. J. Mod. Phys. A 3 (1988) 603 [INSPIRE].ADSGoogle Scholar
  192. [192]
    I. Ivanov, Minkowski space structure of the Higgs potential in 2HDM, Phys. Rev. D 75 (2007)035001 [Erratum ibid. D 76 (2007) 039902] [hep-ph/0609018] [INSPIRE].ADSGoogle Scholar
  193. [193]
    P.M. Ferreira, H.E. Haber and J.P. Silva, Generalized CP symmetries and special regions of parameter space in the two-Higgs-doublet model, Phys. Rev. D 79 (2009) 116004 [arXiv:0902.1537] [INSPIRE].ADSGoogle Scholar
  194. [194]
    M.J.G. Veltman, Second threshold in weak interactions, Acta Phys. Polon. B 8 (1977) 475 [INSPIRE].Google Scholar
  195. [195]
    E. Cerveró and J.-M. Gérard, Minimal violation of flavour and custodial symmetries in a vectophobic two-Higgs-doublet-model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973] [INSPIRE].ADSGoogle Scholar
  196. [196]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSGoogle Scholar
  197. [197]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992)381 [INSPIRE].ADSGoogle Scholar
  198. [198]
    D. Toussaint, Renormalization effects from superheavy Higgs particles, Phys. Rev. D 18 (1978)1626 [INSPIRE].ADSGoogle Scholar
  199. [199]
    J. Frère and J.A.M. Vermaseren, Radiative corrections to masses in the standard model with two scalar doublets, Z. Phys. C 19 (1983) 63 [INSPIRE].ADSGoogle Scholar
  200. [200]
    S. Bertolini, Quantum effects in a two Higgs doublet model of the electroweak interactions, Nucl. Phys. B 272 (1986) 77 [INSPIRE].ADSGoogle Scholar
  201. [201]
    W. Grimus, L. Lavoura, O. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].ADSGoogle Scholar
  202. [202]
    W. Hollik, Nonstandard Higgs bosons in SU(2) × U(1) radiative corrections, Z. Phys. C 32 (1986) 291 [INSPIRE].ADSGoogle Scholar
  203. [203]
    W. Hollik, Radiative corrections with two Higgs doublets at LEP/SLC and HERA, Z. Phys. C 37 (1988) 569 [INSPIRE].ADSGoogle Scholar
  204. [204]
    C. Froggatt, R. Moorhouse and I. Knowles, Leading radiative corrections in two scalar doublet models, Phys. Rev. D 45 (1992) 2471 [INSPIRE].ADSGoogle Scholar
  205. [205]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].ADSGoogle Scholar
  206. [206]
    W. Grimus, L. Lavoura, O. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].ADSGoogle Scholar
  207. [207]
    ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].
  208. [208]
    M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].ADSGoogle Scholar
  209. [209]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  210. [210]
    LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.
  211. [211]
    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  212. [212]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSGoogle Scholar
  213. [213]
    A. Dery, A. Efrati, G. Hiller, Y. Hochberg and Y. Nir, Higgs couplings to fermions: 2HDM with MFV, JHEP 08 (2013) 006 [arXiv:1304.6727] [INSPIRE].ADSGoogle Scholar
  214. [214]
    A. Pich and P. Tuzón, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D 80 (2009)091702 [arXiv:0908.1554] [INSPIRE].ADSGoogle Scholar
  215. [215]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].ADSGoogle Scholar
  216. [216]
    BaBar collaboration, B. Aubert et al., Measurement of the BX(sbranching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].ADSGoogle Scholar
  217. [217]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].
  218. [218]
    J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].ADSGoogle Scholar
  219. [219]
    H. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].ADSGoogle Scholar
  220. [220]
    S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].ADSGoogle Scholar
  221. [221]
    M. Krawczyk and J. Zochowski, Constraining 2HDM by present and future muon (g − 2) data, Phys. Rev. D 55 (1997) 6968 [hep-ph/9608321] [INSPIRE].ADSGoogle Scholar
  222. [222]
    A. Dedes and H.E. Haber, Can the Higgs sector contribute significantly to the muon anomalous magnetic moment?, JHEP 05 (2001) 006 [hep-ph/0102297] [INSPIRE].ADSGoogle Scholar
  223. [223]
    D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g−2 from a generic pseudoscalar boson, Phys. Rev. D 63(2001)091301[hep-ph/0009292] [INSPIRE].ADSGoogle Scholar
  224. [224]
    K. Cheung and O.C. Kong, Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [INSPIRE].ADSGoogle Scholar
  225. [225]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSGoogle Scholar
  226. [226]
    D0 collaboration, V. Abazov et al., Direct search for charged Higgs bosons in decays of top quarks, Phys. Rev. Lett. 88 (2002) 151803 [hep-ex/0102039] [INSPIRE].ADSGoogle Scholar
  227. [227]
    CDF collaboration, A. Abulencia et al., Search for charged Higgs bosons from top quark decays in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 96 (2006) 042003 [hep-ex/0510065] [INSPIRE].ADSGoogle Scholar
  228. [228]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSGoogle Scholar
  229. [229]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012)039 [arXiv:1204.2760] [INSPIRE].ADSGoogle Scholar
  230. [230]
    CMS collaboration, Higgs to tau tau (MSSM) (HCP), CMS-PAS-HIG-12-050 (2012).
  231. [231]
    ATLAS collaboration, Search for neutral MSSM Higgs bosons in sqrts = 7 TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).
  232. [232]
    D. Eriksson, J. Rathsman and O. Stål, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSMATHGoogle Scholar
  233. [233]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSMATHGoogle Scholar
  234. [234]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSGoogle Scholar
  235. [235]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].ADSMATHGoogle Scholar
  236. [236]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].ADSGoogle Scholar
  237. [237]
    M. Maniatis, The Next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].MathSciNetADSGoogle Scholar
  238. [238]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSGoogle Scholar
  239. [239]
    R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  240. [240]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  241. [241]
    Z. Kang, Y. Liu and G.-Z. Ning, Highlights of supersymmetric hypercharge ±1 triplets, JHEP 09 (2013) 091 [arXiv:1301.2204] [INSPIRE].ADSGoogle Scholar
  242. [242]
    A. Delgado, G. Nardini and M. Quirós, A light supersymmetric Higgs sector hidden by a standard model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].ADSGoogle Scholar
  243. [243]
    M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Higgs boson couplings in the triplet model, Phys. Rev. D 87 (2013) 015012 [arXiv:1211.6029] [INSPIRE].ADSGoogle Scholar
  244. [244]
    B. Stech, Flavor symmetry and grand unification, arXiv:1012.6028 [INSPIRE].
  245. [245]
    M. Heikinheimo, A. Racioppi, M. Raidal and C. Spethmann, Twin peak Higgs, arXiv:1307.7146 [INSPIRE].
  246. [246]
    J.F. Gunion, Y. Jiang and S. Kraml, Diagnosing degenerate Higgs bosons at 125 GeV, Phys. Rev. Lett. 110 (2013) 051801 [arXiv:1208.1817] [INSPIRE].ADSGoogle Scholar
  247. [247]
    P. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131] [INSPIRE].ADSGoogle Scholar
  248. [248]
    J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar
  249. [249]
    Y. Grossman, Z. Surujon and J. Zupan, How to test for mass degenerate Higgs resonances, JHEP 03 (2013) 176 [arXiv:1301.0328] [INSPIRE].ADSGoogle Scholar
  250. [250]
    H. Huffel and G. Pocsik, Unitarity bounds on Higgs boson masses in the Weinberg-Salam model with two Higgs doublets, Z. Phys. C 8 (1981) 13 [INSPIRE].ADSGoogle Scholar
  251. [251]
    R.A. Flores and M. Sher, Higgs masses in the standard, multi-Higgs and supersymmetric models, Annals Phys. 148 (1983) 95 [INSPIRE].ADSGoogle Scholar
  252. [252]
    A. Bovier and D. Wyler, Upper bounds on the Higgs masses in multiscalar theories from consistency requirements, Phys. Lett. B 154 (1985) 43 [INSPIRE].ADSGoogle Scholar
  253. [253]
    J. Maalampi, J. Sirkka and I. Vilja, Tree level unitarity and triviality bounds for two Higgs models, Phys. Lett. B 265 (1991) 371 [INSPIRE].ADSGoogle Scholar
  254. [254]
    D. Kominis and R.S. Chivukula, Triviality bounds in two doublet models, Phys. Lett. B 304 (1993)152 [hep-ph/9301222] [INSPIRE].ADSGoogle Scholar
  255. [255]
    K.S. Babu and E. Ma, Bounds on Higgs boson masses in a two doublet extension of the standard model, Phys. Rev. D 31 (1985) 2861 [Erratum ibid. D 33 (1986) 3471] [INSPIRE].ADSGoogle Scholar
  256. [256]
    A. Davies and G.C. Joshi, Momentum scale dependent bounds on masses in two models with more than one Higgs multiplet, Phys. Rev. Lett. 58 (1987) 1919 [INSPIRE].ADSGoogle Scholar
  257. [257]
    B.M. Kastening, Bounds from stability and symmetry breaking on parameters in the two Higgs doublet potential, hep-ph/9307224 [INSPIRE].
  258. [258]
    J. Velhinho, R. Santos and A. Barroso, Tree level vacuum stability in two Higgs doublet models, Phys. Lett. B 322 (1994) 213 [INSPIRE].ADSGoogle Scholar
  259. [259]
    S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B 449 (1999)89 [hep-ph/9811234] [INSPIRE].ADSGoogle Scholar
  260. [260]
    P. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].ADSGoogle Scholar
  261. [261]
    M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J. C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].ADSGoogle Scholar
  262. [262]
    P.M. Ferreira and D.R.T. Jones, Bounds on scalar masses in two Higgs doublet models, JHEP 08 (2009) 069 [arXiv:0903.2856] [INSPIRE].ADSGoogle Scholar
  263. [263]
    M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  264. [264]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSGoogle Scholar
  265. [265]
    G. Kreyerhoff and R. Rodenberg, Renormalization group analysis of Coleman-Weinberg symmetry breaking in two Higgs models, Phys. Lett. B 226 (1989) 323 [INSPIRE].ADSGoogle Scholar
  266. [266]
    J. Freund, G. Kreyerhoff and R. Rodenberg, Vacuum stability in a two Higgs model, Phys. Lett. B 280 (1992) 267 [INSPIRE].ADSGoogle Scholar
  267. [267]
    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].ADSGoogle Scholar
  268. [268]
    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSGoogle Scholar
  269. [269]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSGoogle Scholar
  270. [270]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSGoogle Scholar
  271. [271]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSGoogle Scholar
  272. [272]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, arXiv:1307.3536 [INSPIRE].
  273. [273]
    V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, arXiv:1307.5193 [INSPIRE].
  274. [274]
    B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  275. [275]
    B.W. Lee, C. Quigg and H. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].ADSGoogle Scholar
  276. [276]
    R. Casalbuoni, D. Dominici, R. Gatto and C. Giunti, Strong interacting two doublet and doublet singlet Higgs models, Phys. Lett. B 178 (1986) 235 [INSPIRE].ADSGoogle Scholar
  277. [277]
    R. Casalbuoni, D. Dominici, F. Feruglio and R. Gatto, Tree level unitarity violation for large scalar mass in multi-Higgs extensions of the standard model, Nucl. Phys. B 299 (1988)117 [INSPIRE].ADSGoogle Scholar
  278. [278]
    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].ADSGoogle Scholar
  279. [279]
    S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].ADSGoogle Scholar
  280. [280]
    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].ADSGoogle Scholar
  281. [281]
    I. Ginzburg and I. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].ADSGoogle Scholar
  282. [282]
    P. Osland, P. Pandita and L. Selbuz, Trilinear Higgs couplings in the two Higgs doublet model with CP-violation, Phys. Rev. D 78 (2008) 015003 [arXiv:0802.0060] [INSPIRE].ADSGoogle Scholar
  283. [283]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].ADSGoogle Scholar
  284. [284]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [INSPIRE].ADSGoogle Scholar
  285. [285]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].ADSGoogle Scholar
  286. [286]
    C. Llewellyn Smith, High-energy behavior and gauge symmetry, Phys. Lett. B 46 (1973) 233 [INSPIRE].ADSGoogle Scholar
  287. [287]
    H.A. Weldon, Constraints on scalar masses implied by spontaneous symmetry breaking, Phys. Lett. B 146 (1984) 59 [INSPIRE].ADSGoogle Scholar
  288. [288]
    H.A. Weldon, The effects of multiple Higgs bosons on tree unitarity, Phys. Rev. D 30 (1984)1547 [INSPIRE].ADSGoogle Scholar
  289. [289]
    J. Gunion, H. Haber and J. Wudka, Sum rules for Higgs bosons, Phys. Rev. D 43 (1991) 904 [INSPIRE].ADSGoogle Scholar
  290. [290]
    S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].ADSGoogle Scholar
  291. [291]
    T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  292. [292]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].ADSGoogle Scholar
  293. [293]
    H.E. Haber and R. Hempfling, The renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].ADSGoogle Scholar
  294. [294]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].ADSGoogle Scholar
  295. [295]
    G. Ferrera, J. Guasch, D. López-Val and J. Solà, Triple Higgs boson production in the linear collider, Phys. Lett. B 659 (2008) 297 [arXiv:0707.3162] [INSPIRE].ADSGoogle Scholar
  296. [296]
    A. Arhrib, R. Benbrik and C.-W. Chiang, Probing triple Higgs couplings of the two Higgs doublet model at linear collider, Phys. Rev. D 77 (2008) 115013 [arXiv:0802.0319] [INSPIRE].ADSGoogle Scholar
  297. [297]
    R.N. Hodgkinson, D. López-Val and J. Solà, Higgs boson pair production through gauge boson fusion at linear colliders within the general 2HDM, Phys. Lett. B 673 (2009) 47 [arXiv:0901.2257] [INSPIRE].ADSGoogle Scholar
  298. [298]
    F. Cornet and W. Hollik, Pair production of two-Higgs-doublet model light Higgs bosons in γγ collisions, Phys. Lett. B 669 (2008) 58 [arXiv:0808.0719] [INSPIRE].ADSGoogle Scholar
  299. [299]
    E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production at a photon-photon collision in the two Higgs doublet model, Phys. Lett. B 672 (2009)354 [arXiv:0809.0094] [INSPIRE].ADSGoogle Scholar
  300. [300]
    N. Bernal, D. López-Val and J. Solà, Single Higgs-boson production through γ-γ scattering within the general 2HDM, Phys. Lett. B 677 (2009) 39 [arXiv:0903.4978] [INSPIRE].ADSGoogle Scholar
  301. [301]
    A. Arhrib, R. Benbrik, C.-H. Chen and R. Santos, Neutral Higgs boson pair production in photon-photon annihilation in the two Higgs doublet model, Phys. Rev. D 80 (2009) 015010 [arXiv:0901.3380] [INSPIRE].ADSGoogle Scholar
  302. [302]
    D. López-Val, J. Solà and N. Bernal, Quantum effects on Higgs-strahlung events at linear colliders within the general 2HDM, Phys. Rev. D 81 (2010) 113005 [arXiv:1003.4312] [INSPIRE].ADSGoogle Scholar
  303. [303]
    E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production in new physics models at hadron, lepton and photon colliders, Phys. Rev. D 82 (2010)115002 [arXiv:1009.4670] [INSPIRE].ADSGoogle Scholar
  304. [304]
    J. Solà and D. López-Val, Neutral Higgs boson pair production at linear colliders, Fortsch. Phys. 58 (2010) 660 [INSPIRE].ADSGoogle Scholar
  305. [305]
    D. López-Val and J. Solà, Single Higgs-boson production at a photon-photon collider: general 2HDM versus MSSM, Phys. Lett. B 702 (2011) 246 [arXiv:1106.3226] [INSPIRE].ADSGoogle Scholar
  306. [306]
    D. López-Val and J. Solà, Δr in the two-Higgs-doublet model at full one loop levelAnd beyond, Eur. Phys. J. C 73 (2013) 2393 [arXiv:1211.0311] [INSPIRE].ADSGoogle Scholar
  307. [307]
    A.G. Akeroyd, Nonminimal neutral Higgs bosons at LEP-2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [INSPIRE].ADSGoogle Scholar
  308. [308]
    A.G. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [INSPIRE].ADSGoogle Scholar
  309. [309]
    T. Appelquist and J. Carazzone, Infrared singularities and massivel fields, Phys. Rev. D 11 (1975)2856 [INSPIRE].ADSGoogle Scholar
  310. [310]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSGoogle Scholar
  311. [311]
    A. Arhrib, W. Hollik, S. Peñaranda and M. Capdequi Peyranère, Higgs decays in the two Higgs doublet model: large quantum effects in the decoupling regime, Phys. Lett. B 579 (2004)361 [INSPIRE].ADSGoogle Scholar
  312. [312]
    M. Malinsky and J. Horejsi, Triple gauge vertices at one loop level in THDM, Eur. Phys. J. C 34 (2004) 477 [hep-ph/0308247] [INSPIRE].ADSGoogle Scholar
  313. [313]
    M. Malinsky and J. Horejsi, Possible non-decoupling effects of heavy Higgs bosons in e+e− → W +Wwithin THDM, Eur. Phys. J. C 40 (2005) 137 [hep-ph/0409320] [INSPIRE].ADSGoogle Scholar
  314. [314]
    S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha and C. Yuan, New physics effect on the Higgs selfcoupling, Phys. Lett. B 558 (2003) 157 [hep-ph/0211308] [INSPIRE].ADSGoogle Scholar
  315. [315]
    M. Krawczyk and D. Temes, 2HDM(II) radiative corrections in leptonic tau decays, Eur. Phys. J. C 44 (2005) 435 [hep-ph/0410248] [INSPIRE].ADSGoogle Scholar
  316. [316]
    S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].ADSGoogle Scholar
  317. [317]
    S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [INSPIRE].ADSGoogle Scholar
  318. [318]
    D. López-Val and J. Solà, Neutral Higgs-pair production at linear colliders within the general 2HDM: quantum effects and triple Higgs boson self-interactions, Phys. Rev. D 81 (2010)033003 [arXiv:0908.2898] [INSPIRE].ADSGoogle Scholar
  319. [319]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSMATHGoogle Scholar
  320. [320]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSGoogle Scholar
  321. [321]
    T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].ADSMATHGoogle Scholar
  322. [322]
    T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006)236 [hep-ph/0601248] [INSPIRE].ADSGoogle Scholar
  323. [323]
    S. Kanemura, S. Matsumoto, T. Nabeshima and H. Taniguchi, Testing Higgs portal dark matter via Z fusion at a linear collider, Phys. Lett. B 701 (2011) 591 [arXiv:1102.5147] [INSPIRE].ADSGoogle Scholar
  324. [324]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  325. [325]
    S.K. Garg and C.S. Kim, Vector like leptons with extended Higgs sector, arXiv:1305.4712 [INSPIRE].
  326. [326]
    X. Chu, Y. Mambrini, J. Quevillon and B. Zaldivar, Thermal and non-thermal production of dark matter via Z -portal(s), arXiv:1306.4677 [INSPIRE].
  327. [327]
    L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does H → γγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].ADSGoogle Scholar
  328. [328]
    A. Joglekar, P. Schwaller and C.E.M. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].ADSGoogle Scholar
  329. [329]
    P. Schwaller, T.M.P. Tait and R. Vega-Morales, Dark Matter and Vector-like Leptons From Gauged Lepton Number, Phys. Rev. D 88 (2013) 035001 [arXiv:1305.1108] [INSPIRE].ADSGoogle Scholar
  330. [330]
    A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B 715 (2012)310 [arXiv:1204.1252] [INSPIRE].ADSGoogle Scholar
  331. [331]
    E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs searches on the four generation standard model, Phys. Rev. Lett. 110 (2013) 091801 [arXiv:1204.1975] [INSPIRE].ADSGoogle Scholar
  332. [332]
    O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].ADSGoogle Scholar
  333. [333]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  334. [334]
    M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].ADSGoogle Scholar
  335. [335]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective lagrangian for the tbH + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSGoogle Scholar
  336. [336]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, bsγ and supersymmetry with large tan β, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003] [INSPIRE].ADSGoogle Scholar
  337. [337]
    R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring supersymmetry, Eur. Phys. J. C 54 (2008)617 [arXiv:0709.3985] [INSPIRE].ADSGoogle Scholar
  338. [338]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].ADSGoogle Scholar
  339. [339]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  340. [340]
    R. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].ADSGoogle Scholar
  341. [341]
    R.S. Gupta and J.D. Wells, Higgs boson search significance deformations due to mixed-in scalars, Phys. Lett. B 710 (2012) 154 [arXiv:1110.0824] [INSPIRE].ADSGoogle Scholar
  342. [342]
    S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [INSPIRE].ADSGoogle Scholar
  343. [343]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSGoogle Scholar
  344. [344]
    L. Randall, Two Higgs models for large tan β and heavy second Higgs, JHEP 02 (2008) 084 [arXiv:0711.4360] [INSPIRE].ADSGoogle Scholar
  345. [345]
    K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.Institute for Theoretical PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations