Journal of High Energy Physics

, 2013:118 | Cite as

Testable two-loop radiative neutrino mass model based on an LLQd c Qd c effective operator

  • Paul W. Angel
  • Yi Cai
  • Nicholas L. Rodd
  • Michael A. Schmidt
  • Raymond R. Volkas


A new two-loop radiative Majorana neutrino mass model is constructed from the gauge-invariant effective operator L i L j Q k d c Q l d c ϵ ik ϵ jl that violates lepton number conservation by two units. The ultraviolet completion features two scalar leptoquark flavors and a color-octet Majorana fermion. We show that there exists a region of parameter space where the neutrino oscillation data can be fitted while simultaneously meeting flavor-violation and collider bounds. The model is testable through lepton flavor-violating processes such as μeγ, μeee, and μNeN conversion, as well as collider searches for the scalar leptoquarks and color-octet fermion. We computed and compiled a list of necessary Passarino-Veltman integrals up to boxes in the approximation of vanishing external momenta and made them available as a Mathematica package, denoted as ANT.


Beyond Standard Model Neutrino Physics 


  1. [1]
    P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Yanagida, in Proceedings of the Workshop on The Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.Google Scholar
  3. [3]
    S.L. Glashow, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1980), pg. 687.Google Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland, Amsterdam The Netherlands (1979), pg. 315.Google Scholar
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P.B. Dev and A. Pilaftsis, Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  11. [11]
    C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  14. [14]
    T. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  16. [16]
    A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
  17. [17]
    A. Zee, Quantum Numbers of Majorana Neutrino Masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    K. Babu, Model ofCalculableMajorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Aoki, S. Kanemura and O. Seto, A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Gustafsson, J.M. No and M.A. Rivera, The Cocktail Model: Neutrino Masses and Mixings with Dark Matter, Phys. Rev. Lett. 110 (2013) 211802 [arXiv:1212.4806] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Dey, A. Kundu, B. Mukhopadhyaya and S. Nandi, Two-loop neutrino masses with large R-parity violating interactions in supersymmetry, JHEP 12 (2008) 100 [arXiv:0808.1523] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Babu and J. Julio, Two-Loop Neutrino Mass Generation through Leptoquarks, Nucl. Phys. B 841 (2010) 130 [arXiv:1006.1092] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Babu and J. Julio, Radiative Neutrino Mass Generation through Vector-like Quarks, Phys. Rev. D 85 (2012) 073005 [arXiv:1112.5452] [INSPIRE].ADSGoogle Scholar
  26. [26]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Y. Cai, X.-G. He, M. Ramsey-Musolf and L.-H. Tsai, RνMDM and lepton flavor violation, JHEP 12 (2011) 054 [arXiv:1108.0969] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Ma, Common origin of neutrino mass, dark matter and baryogenesis, Mod. Phys. Lett. A 21 (2006) 1777 [hep-ph/0605180] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of Dark Matter: Muon Anomalous Magnetic Moment, Radiative Neutrino Mass and Novel Leptogenesis at the TeV Scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Babu and E. Ma, Singlet fermion dark matter and electroweak baryogenesis with radiative neutrino mass, Int. J. Mod. Phys. A 23 (2008) 1813 [arXiv:0708.3790] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Fileviez Perez and M.B. Wise, On the Origin of Neutrino Masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.S.C. Law and K.L. McDonald, The Simplest Models of Radiative Neutrino Mass: Excluding Simplified Zee Models and Beyond, arXiv:1303.6384 [INSPIRE].
  35. [35]
    Y. Farzan, S. Pascoli and M.A. Schmidt, Recipes and ingredients for neutrino mass at loop level, JHEP 03 (2013) 107 [arXiv:1208.2732] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S.S. Law and K.L. McDonald, A class of inert N-tuplet models with radiative neutrino mass and dark matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic decomposition of the neutrinoless double beta decay operator, JHEP 03 (2013) 055 [arXiv:1212.3045] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ΔL = 2 effective operators and their ultraviolet completions, Phys. Rev. D 87 (2013) 073007 [arXiv:1212.6111] [INSPIRE].ADSGoogle Scholar
  42. [42]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Bowes, R. Foot and R. Volkas, Electric charge quantization from gauge invariance of a Lagrangian: a catalog of baryon number violating scalar interactions, Phys. Rev. D 54 (1996) 6936 [hep-ph/9609290] [INSPIRE].ADSGoogle Scholar
  44. [44]
    I. Baldes, N.F. Bell and R.R. Volkas, Baryon Number Violating Scalar Diquarks at the LHC, Phys. Rev. D 84 (2011) 115019 [arXiv:1110.4450] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Passarino and M. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  52. [52]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  53. [53]
    L. Lavoura, General formulae for f 1f 2 γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, arXiv:1303.0754 [INSPIRE].
  55. [55]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].
  57. [57]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [INSPIRE].ADSGoogle Scholar
  59. [59]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].
  61. [61]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  62. [62]
    T. Kosmas, S. Kovalenko and I. Schmidt, Nuclear μ e conversion in strange quark sea, Phys. Lett. B 511 (2001) 203 [hep-ph/0102101] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    COMET collaboration, E.V. Hungerford, COMET/PRISM Muon to Electron Conversion at JPARC, AIP Conf. Proc. 1182 (2009) 694.Google Scholar
  64. [64]
    COMET collaboration, Y. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam (COMET), (2009).Google Scholar
  65. [65]
    Mu2e collaboration, R. Carey et al., Proposal to search for Ne N with a single event sensitivity below 10−16, (2008).Google Scholar
  66. [66]
    COMET collaboration, A. Kurup, The COherent Muon to Electron Transition (COMET) experiment, Nucl. Phys. Proc. Suppl. 218 (2011) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    R.K. Kutschke, The Mu2e Experiment at Fermilab, arXiv:1112.0242 [INSPIRE].
  68. [68]
    SINDRUM II collaboration, W. Honecker et al., Improved limit on the branching ratio of μe conversion on lead, Phys. Rev. Lett. 76 (1996) 200 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in bs transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Fleischer, Flavour Physics and CP-violation: Expecting the LHC, arXiv:0802.2882 [INSPIRE].
  74. [74]
    T. Inami and C. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K_L}\to \mu \overline{\mu} \) , K +π + Neutrino anti-neutrino and \( {K^0}\leftrightarrow {{\overline{K}}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].Google Scholar
  75. [75]
    M. Ciuchini et al., Delta M(K) and epsilon(K) in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D. Becirevic et al., \( {B_d}-{{\overline{B}}_d} \) mixing and the B dJ/ψK s asymmetry in general SUSY models, Nucl. Phys. B 634 (2002) 105 [hep-ph/0112303] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    UTfit collaboration, (2013).
  78. [78]
    L. Silvestrini, private communication (2013).Google Scholar
  79. [79]
    C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m t dependence of BR[BX s l + l ], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    C. Bobeth, A.J. Buras, F. Krüger and J. Urban, QCD corrections to \( \overline{B}\to {X_{d,s }}\nu \overline{\nu} \) , \( {{\overline{B}}_{d,s }}\to \ell {{}^{+}}{\ell^{-}},K\to \pi \nu \overline{\nu} \) and K Lμ + μ in the MSSM, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    LHCb collaboration, First Evidence for the Decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  82. [82]
    LHCb collaboration, Measurement of the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    CMS collaboration, Measurement of the B(s) to μ + μ branching fraction and search for B0 to μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    CMS collaboration, Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 055 [arXiv:1210.5627] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    CMS collaboration, Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 110 [arXiv:1205.3933] [INSPIRE].ADSGoogle Scholar
  87. [87]
    CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].
  88. [88]
    J. van der Bij and M. Veltman, Two Loop Large Higgs Mass Correction to the rho Parameter, Nucl. Phys. B 231 (1984) 205 [INSPIRE].ADSGoogle Scholar
  89. [89]
    A. Ghinculov and J. van der Bij, Massive two loop diagrams: the Higgs propagator, Nucl. Phys. B 436 (1995) 30 [hep-ph/9405418] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    K.L. McDonald and B. McKellar, Evaluating the two loop diagram responsible for neutrino mass in Babus model, hep-ph/0309270 [INSPIRE].
  91. [91]
    G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  92. [92]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Paul W. Angel
    • 1
  • Yi Cai
    • 1
  • Nicholas L. Rodd
    • 1
  • Michael A. Schmidt
    • 1
  • Raymond R. Volkas
    • 1
  1. 1.ARC Centre of Excellence for Particle Physics at the Terascale, School of PhysicsUniversity of MelbourneVictoriaAustralia

Personalised recommendations