Advertisement

Journal of High Energy Physics

, 2013:107 | Cite as

Black hole entanglement and quantum error correction

  • Erik Verlinde
  • Herman Verlinde
Article

Abstract

It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic perspective in which all black hole degrees of freedom live on the stretched horizon. We model the horizon as a unitary quantum system with finite entropy, and do not postulate that the horizon geometry is smooth. We then show that, with mild assumptions, one can reconstruct local effective field theory observables that probe the black hole interior, and relative to which the state near the horizon looks like a local Minkowski vacuum. The reconstruction makes use of the formalism of quantum error correcting codes, and works for black hole states whose entanglement entropy does not yet saturate the Bekenstein-Hawking bound. Our general framework clarifies the black hole final state proposal, and allows a quantitative study of the transition into the “firewall” regime of maximally mixed black hole states.

Keywords

Statistical Methods Black Holes 

References

  1. [1]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
  6. [6]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  7. [7]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  8. [8]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  10. [10]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, arXiv:1208.2005 [INSPIRE].
  15. [15]
    B.D. Chowdhury and A. Puhm, Is Alice burning or fuzzing?, Phys. Rev. D 88 (2013) 063509 [arXiv:1208.2026] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L. Susskind, Singularities, firewalls, and complementarity, arXiv:1208.3445 [INSPIRE].
  17. [17]
    I. Bena, A. Puhm and B. Vercnocke, Non-extremal black hole microstates: fuzzballs of fire or fuzzballs of fuzz?, JHEP 12 (2012) 014 [arXiv:1208.3468] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    T. Banks and W. Fischler, Holographic space-time does not predict firewalls, arXiv:1208.4757 [INSPIRE].
  19. [19]
    A. Ori, Firewall or smooth horizon?, arXiv:1208.6480 [INSPIRE].
  20. [20]
    S. Hossenfelder, Comment on the black hole firewall, arXiv:1210.5317 [INSPIRE].
  21. [21]
    L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].
  22. [22]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S.D. Mathur, The information paradox: conflicts and resolutions, Pramana 79 (2012) 1059 [arXiv:1201.2079] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S.G. Avery, Qubit models of black hole evaporation, JHEP 01 (2013) 176 [arXiv:1109.2911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    S.B. Giddings and Y. Shi, Quantum information transfer and models for black hole mechanics, Phys. Rev. D 87 (2013) 064031 [arXiv:1205.4732] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  28. [28]
    D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].
  29. [29]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  31. [31]
    G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    D. Gottesman and J. Preskill, Comment onThe black hole final state’, JHEP 03 (2004) 026 [hep-th/0311269] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    W.H. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett. 49 (1982) 1683.ADSCrossRefGoogle Scholar
  34. [34]
    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2000).MATHGoogle Scholar
  35. [35]
    J. Preskill, Lectures on quantum information and quantum computation, http://www.theory.caltech.edu/~preskill/ph229/#lecture.
  36. [36]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  37. [37]
    S.D. Mathur, The Fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  3. 3.Princeton Center for Theoretical SciencePrincetonU.S.A.

Personalised recommendations