Advertisement

Journal of High Energy Physics

, 2013:103 | Cite as

T-duality of D-brane action at order α′ in bosonic string theory

  • Mohammad R. Garousi
  • Ahmad Ghodsi
  • Tooraj Houri
  • Ghadir Jafari
Article

Abstract

In bosonic string theory, it is known that the Buscher rules for the T-duality transformations receive quantum corrections at order α′. In this paper, we use the consistency of the gravity couplings on the D-brane effective action at order α′, with the above T-duality transformations to find the B-field and the dilaton couplings. We show that these couplings are fully consistent with the corresponding disk-level S-matrix elements in string theory.

Keywords

D-branes Bosonic Strings String Duality 

References

  1. [1]
    K. Kikkawa and M. Yamasaki, Casimir Effects in Superstring Theories, Phys. Lett. B 149 (1984) 357 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    T. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    T. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, An Introduction to T duality in string theory, Nucl. Phys. Proc. Suppl. 41 (1995) 1 [hep-th/9410237] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    R. Metsaev and A.A. Tseytlin, Order alpha-prime (Two Loop) Equivalence of the String Equations of Motion and the σ-model Weyl Invariance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor, Nucl. Phys. B 293 (1987) 385 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    D.J. Gross and J.H. Sloan, The Quartic Effective Action for the Heterotic String, Nucl. Phys. B 291 (1987) 41 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP 05 (1999) 011 [hep-th/9903210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Corley, D.A. Lowe and S. Ramgoolam, Einstein-Hilbert action on the brane for the bulk graviton, JHEP 07 (2001) 030 [hep-th/0106067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev. D 56 (1997) 7940 [hep-th/9705193] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    M.R. Garousi, T-duality of Curvature terms in D-brane actions, JHEP 02 (2010) 002 [arXiv:0911.0255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  19. [19]
    K.A. Meissner, Symmetries of higher order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Metsaev and A.A. Tseytlin, Curvature Cubed Terms in String Theory Effective Actions, Phys. Lett. B 185 (1987) 52 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A.A. Tseytlin, Ambiguity in the Effective Action in String Theories, Phys. Lett. B 176 (1986) 92 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Leigh, Dirac- Born-Infeld Action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    C. Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Ardalan, H. Arfaei, M. Garousi and A. Ghodsi, Gravity on noncommutative D-branes, Int. J. Mod. Phys. A 18 (2003) 1051 [hep-th/0204117] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.R. Garousi, S-duality of D-brane action at order O(α2), Phys. Lett. B 701 (2011) 465 [arXiv:1103.3121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    P. Meessen and T. Ortín, An SL(2, Z) multiplet of nine-dimensional type-II supergravity theories, Nucl. Phys. B 541 (1999) 195 [hep-th/9806120] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P. Townsend, Duality of type-II 7 branes and 8 branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B. Carter, Brane dynamics for treatment of cosmic strings and vortons, hep-th/9705172 [INSPIRE].
  32. [32]
    K. Peeters, A Field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    K. Peeters, Introducing Cadabra: A Symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Mohammad R. Garousi
    • 1
  • Ahmad Ghodsi
    • 1
  • Tooraj Houri
    • 1
  • Ghadir Jafari
    • 1
  1. 1.Department of PhysicsFerdowsi University of MashhadMashhadIran

Personalised recommendations