Advertisement

Conformal supergravity in three dimensions: off-shell actions

  • Daniel Butter
  • Sergei M. Kuzenko
  • Joseph Novak
  • Gabriele Tartaglino-Mazzucchelli
Article

Abstract

Using the off-shell formulation for \( \mathcal{N} \)-extended conformal supergravity in three dimensions that has recently been presented in arXiv:1305.3132, we construct superspace actions for conformal supergravity theories with \( \mathcal{N} \) < 6. For each of the cases considered, we work out the complete component action as well as the gauge transformation laws of the fields belonging to the Weyl supermultiplet. The \( \mathcal{N} \) = 1 and \( \mathcal{N} \) = 2 component actions derived coincide with those proposed by van Nieuwenhuizen and Roček in the mid-1980s. The off-shell \( \mathcal{N} \) = 3, \( \mathcal{N} \) = 4 and \( \mathcal{N} \) = 5 supergravity actions are new results. Upon elimination of the auxiliary fields, these actions reduce to those constructed by Lindström and Roček in 1989 (and also by Gates and Nishino in 1993).

Keywords

Extended Supersymmetry Superspaces Supergravity Models 

References

  1. [1]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: New off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    D. Butter, N = 1 Conformal Superspace in Four Dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  3. [3]
    D. Butter, N = 2 Conformal Superspace in Four Dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    P.S. Howe, J. Izquierdo, G. Papadopoulos and P. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Three-dimensional N = 2 (AdS) supergravity and associated supercurrents, JHEP 12 (2011) 052 [arXiv:1109.0496] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    P. van Nieuwenhuizen, D = 3 Conformal Supergravity and Chern-Simons Terms, Phys. Rev. D 32 (1985) 872 [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    M. Roček and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons terms as d = 3 extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    U. Lindström and M. Roček, Superconformal Gravity in Three-dimensions as a Gauge Theory, Phys. Rev. Lett. 62 (1989) 2905 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  10. [10]
    H. Nishino and S.J. Gates Jr., Chern-Simons theories with supersymmetries in three-dimensions, Int. J. Mod. Phys. A 8 (1993) 3371 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Conformal supergravities as Chern-Simons theories revisited, JHEP 03 (2013) 113 [arXiv:1212.6852] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M.F. Hasler, The Three form multiplet in N = 2 superspace, Eur. Phys. J. C 1 (1998) 729 [hep-th/9606076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S.J. Gates Jr., Ectoplasm has no topology: The Prelude, hep-th/9709104 [INSPIRE].
  14. [14]
    S.J. Gates Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: Normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203 [hep-th/9711151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity, World Scientific, Singapore (1991).Google Scholar
  16. [16]
    D. Butter, S.M. Kuzenko and J. Novak, The linear multiplet and ectoplasm, JHEP 09 (2012) 131 [arXiv:1205.6981] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefMATHGoogle Scholar
  18. [18]
    P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    B. Zupnik and D. Pak, Superfield Formulation of the Simplest Three-dimensional Gauge Theories and Conformal Supergravities, Theor. Math. Phys. 77 (1988) 1070 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    S.M. Kuzenko, Prepotentials for N = 2 conformal supergravity in three dimensions, JHEP 12 (2012) 021 [arXiv:1209.3894] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Bossard, P. Howe, U. Lindström, K. Stelle and L. Wulff, Integral invariants in maximally supersymmetric Yang-Mills theories, JHEP 05 (2011) 021 [arXiv:1012.3142] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Bossard, P. Howe and K. Stelle, Invariants and divergences in half-maximal supergravity theories, arXiv:1304.7753 [INSPIRE].
  24. [24]
    M. Becker, D. Constantin, S.J. Gates Jr., I. Linch, William Divine, W. Merrell et al., M theory on spin(7) manifolds, fluxes and 3-D, N = 1 supergravity, Nucl. Phys. B 683 (2004) 67 [hep-th/0312040] [INSPIRE].
  25. [25]
    V. Kac, Lie Superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].CrossRefMATHGoogle Scholar
  26. [26]
    B.S. DeWitt, Supermanifolds, Cambridge University Press, Cambridge U.K. (1992).CrossRefMATHGoogle Scholar
  27. [27]
    J. Wess and B. Zumino, The Component Formalism Follows From the Superspace Formulation of Supergravity, Phys. Lett. B 79 (1978) 394 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton U.K. (1992).Google Scholar
  29. [29]
    S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].Google Scholar
  30. [30]
    L. Baulieu, M.P. Bellon and R. Grimm, BRS Symmetry of Supergravity in Superspace and Its Projection to Component Formalism, Nucl. Phys. B 294 (1987) 279 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: A Geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  32. [32]
    J. Greitz and P. Howe, Maximal supergravity in three dimensions: supergeometry and differential forms, JHEP 07 (2011) 071 [arXiv:1103.2730] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    U. Gran, J. Greitz, P.S. Howe and B.E. Nilsson, Topologically gauged superconformal Chern-Simons matter theories, JHEP 12 (2012) 046 [arXiv:1204.2521] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Deser and J. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Deser, Cosmological topological supergravity, in Quantum Theory Of Gravity, S.M. Christensen (Ed.), Adam Hilger, Bristol (1984).Google Scholar
  36. [36]
    E.A. Bergshoeff, O. Hohm, J. Rosseel and P.K. Townsend, On Maximal Massive 3D Supergravity, Class. Quant. Grav. 27 (2010) 235012 [arXiv:1007.4075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    S.M. Kuzenko, U. Lindström, M. Roček, I. Sachs and G. Tartaglino-Mazzucchelli, work in progress.Google Scholar
  38. [38]
    P.S. Howe and M. Leeming, Harmonic superspaces in low dimensions, Class. Quant. Grav. 11 (1994) 2843 [hep-th/9408062] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  39. [39]
    B. Zupnik, Chern-Simons D = 3, N = 6 superfield theory, Phys. Lett. B 660 (2008) 254 [arXiv:0711.4680] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    B. Zupnik, Chern-Simons theory in SO(5)/U(2) harmonic superspace, Theor. Math. Phys. 157 (2008) 1550 [arXiv:0802.0801] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    I.A. Bandos, D.P. Sorokin and D. Volkov, On the generalized action principle for superstrings and supermembranes, Phys. Lett. B 352 (1995) 269 [hep-th/9502141] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L. Bonora, P. Pasti and M. Tonin, Chiral Anomalies in Higher Dimensional Supersymmetric Theories, Nucl. Phys. B 286 (1987) 150 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    P.S. Howe, O. Raetzel and E. Sezgin, On brane actions and superembeddings, JHEP 08 (1998) 011 [hep-th/9804051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Daniel Butter
    • 1
  • Sergei M. Kuzenko
    • 2
  • Joseph Novak
    • 2
  • Gabriele Tartaglino-Mazzucchelli
    • 2
  1. 1.Nikhef Theory GroupAmsterdamThe Netherlands
  2. 2.School of Physics M013The University of Western AustraliaCrawleyAustralia

Personalised recommendations