BRST technique for the cosmological density matrix

  • A.O. Barvinsky


The microcanonical density matrix in closed cosmology has a natural definition as a projector on the space of solutions of Wheeler-DeWitt equations, which is motivated by the absence of global non-vanishing charges and energy in spatially closed gravitational systems. Using the BRST/BFV formalism in relativistic phase space of gauge and ghost variables we derive the path integral representation for this projector and the relevant statistical sum. This derivation circumvents the difficulties associated with the open algebra of noncommutative quantum Dirac constraints and the construction/regularization of the physical inner product in the subspace of BRS singlets. This inner product is achieved via the Batalin-Marnelius gauge fixing in the space of BRS-invariant states, which in its turn is shown to be a result of truncation of the BRST/BFV formalism to the “matter” sector of relativistic phase space.


BRST Quantization BRST Symmetry Cosmology of Theories beyond the SM Space-Time Symmetries 


  1. [1]
    B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York U.S.A (1965).MATHGoogle Scholar
  2. [2]
    L. Faddeev and V. Popov, Feynman Diagrams for the Yang-Mills Field, Phys. Lett. B 25 (1967) 29 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.O. Barvinsky, Why there is something rather than nothing (out of everything)?, Phys. Rev. Lett. 99 (2007) 071301 [arXiv:0704.0083] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A.O. Barvinsky and A.Y. Kamenshchik, Cosmological landscape from nothing: Some like it hot, JCAP 09 (2006) 014 [hep-th/0605132] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.O. Barvinsky and A.Y. Kamenshchik, Thermodynamics via Creation from Nothing: Limiting the Cosmological Constant Landscape, Phys. Rev. D 74 (2006) 121502 [hep-th/0611206] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A.O. Barvinsky, The path integral for the statistical sum of the microcanonical ensemble in cosmology, JCAP 04 (2011) 034 [arXiv:1012.1568] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.O. Barvinsky, C. Deffayet and A.Y. Kamenshchik, Anomaly Driven Cosmology: Big Boost Scenario and AdS/CFT Correspondence, JCAP 05 (2008) 020 [arXiv:0801.2063] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.O. Barvinsky, The a-theorem and temperature of the CMB temperature in cosmology, arXiv:1305.4223 [INSPIRE].
  9. [9]
    E. Fradkin and G. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett. B 55 (1975) 224 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    CERN report TH-2332 (1977).Google Scholar
  11. [11]
    I. Batalin and G. Vilkovisky, Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints, Phys. Lett. B 69 (1977) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Fradkin and T. Fradkina, Quantization of Relativistic Systems with Boson and Fermion First and Second Class Constraints, Phys. Lett. B 72 (1978) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I.A. Batalin and E.S. Fradkin, Operator Quantization and Abelization of Dynamical Systems Subject to First Class Constraints, Riv. Nuovo Cim. 9 (1986) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    I.A. Batalin and E.S. Fradkin, Operatorial quantizaion of dynamical systems subject to constraints. A Further study of the construction, Annales Poincare Phys.Theor. 49 (1988) 145 [INSPIRE].MathSciNetGoogle Scholar
  15. [15]
    M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992).MATHGoogle Scholar
  16. [16]
    A.O. Barvinsky, Unitarity approach to quantum cosmology, Phys. Rept. 230 (1993) 237 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A.O. Barvinsky and V. Krykhtin, Dirac and BFV quantization methods in the one loop approximation: Closure of the quantum constraint algebra and the conserved inner product, Class. Quant. Grav. 10 (1993) 1957 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  18. [18]
    R. Marnelius, Simple BRST quantization of general gauge models, Nucl. Phys. B 395 (1993) 647 [hep-th/9212003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    I. Batalin and R. Marnelius, Solving general gauge theories on inner product spaces, Nucl. Phys. B 442 (1995) 669 [hep-th/9501004] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Ferraro, M. Henneaux and M. Puchin, On the quantization of reducible gauge systems, J. Math. Phys. 34 (1993) 2757 [hep-th/9210070] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  21. [21]
    R. Ferraro, M. Henneaux and M. Puchin, Path integral and solutions of the constraint equations: The case of reducible gauge theories, Phys. Lett. B 333 (1994) 380 [hep-th/9405160] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Marnelius and U. Quaade, BRST quantization of gauge theories like SL(2, \( \mathbb{R} \)) on inner product spaces, J. Math. Phys. 36 (1995) 3289 [hep-th/9501003] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    L. Faddeev, Feynman integral for singular Lagrangians, Theor. Math. Phys. 1 (1969) 1 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A.O. Barvinsky, The general semiclassical solution of the Wheeler-DeWitt equations and the issue of unitarity in quantum cosmology, Phys. Lett. B 241 (1990) 201 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A.O. Barvinsky, Geometry of the Dirac quantization of constrained systems, gr-qc/9612003 [INSPIRE].
  26. [26]
    J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    J.D. Brown and J.W. York, The microcanonical functional integral. 1. The gravitational field, Phys. Rev. D 47 (1993) 1420 [gr-qc/9209014] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    B.L. Altshuler and A.O. Barvinsky, Physics-Uspekhi 39 (1996) 429.Google Scholar
  29. [29]
    J. Hartle and S. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    S. Hawking, The Quantum State of the Universe, Nucl. Phys. B 239 (1984) 257 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A.D. Linde, Quantum Creation of the Inflationary Universe, Lett. Nuovo Cim. 39 (1984) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V. Rubakov, Particle Creation In A Tunneling Universe, JETP Lett. 39 (1984) 107 [INSPIRE].ADSGoogle Scholar
  33. [33]
    Y. Zeldovich and A.A. Starobinsky, Quantum creation of a universe in a nontrivial topology, Sov. Astron. Lett. 10 (1984) 135 [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Vilenkin, Quantum Creation of Universes, Phys. Rev. D 30 (1984) 509 [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    R. Marnelius, Proper BRST quantization of relativistic particles, Nucl. Phys. B 418 (1994) 353 [hep-th/9309002] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A.O. Barvinsky and A.Yu. Kamenshchik, Selection rules for the Wheeler-DeWitt equation in quantum cosmology, work in progress.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Theory DepartmentLebedev Physics InstituteMoscowRussia

Personalised recommendations