Masses, mixing angles and phases of general Majorana neutrino mass matrix

  • Biswajit Adhikary
  • Mainak Chakraborty
  • Ambar Ghosal


General Majorana neutrino mass matrix is complex symmetric and for three generations of neutrinos it contains 12 real parameters. We diagonalize this general neutrino mass matrix and express the three neutrino masses, three mixing angles, one Dirac CP phase and two Majorana phases (removing three unphysical phases) in terms of the neutrino mass matrix elements. We apply the results in the context of a neutrino mass matrix derived from a broken cyclic symmetry invoking type-I seesaw mechanism. Phenomenological study of the above mass matrix allows enough parameter space to satisfy the neutrino oscillation data with only 10% breaking of this symmetry. In this model only normal mass hierarchy is allowed. In addition, the Dirac CP phase and the Majorana phases are numerically estimated. Σm i and |m νee | are also calculated.


Neutrino Physics Beyond Standard Model Discrete and Finite Symmetries 


  1. [1]
    SNO collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].ADSGoogle Scholar
  2. [2]
    SNO collaboration, B. Aharmim et al., Low energy threshold analysis of the phase I and phase Ii data sets of the Sudbury Neutrino Observatory, Phys. Rev. C 81 (2010) 055504 [arXiv:0910.2984] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSGoogle Scholar
  5. [5]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSGoogle Scholar
  6. [6]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSGoogle Scholar
  7. [7]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  9. [9]
    WMAP collaboration, C. Bennett et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Giuliani, Searches for neutrinoless double beta decay, Acta Phys. Polon. B 41 (2010) 1447 [INSPIRE].Google Scholar
  12. [12]
    W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. Morisi and J. Valle, Neutrino masses and mixing: a flavour symmetry roadmap, Fortsch. Phys. 61 (2013) 466 [arXiv:1206.6678] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A.Y. Smirnov, Neutrino mass, mixing and discrete symmetries, J. Phys. Conf. Ser. 447 (2013) 012004 [arXiv:1305.4827] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G. Altarelli, Status of neutrino masses and mixing in 2009, Nuovo Cim. C32N5-6 (2009) 91 [arXiv:0905.3265] [INSPIRE].
  17. [17]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].ADSGoogle Scholar
  18. [18]
    K. Babu, E. Ma and J. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Hirsch, J. Romao, S. Skadhauge, J. Valle and A. Villanova del Moral, Degenerate neutrinos from a supersymmetric A 4 model, hep-ph/0312244 [INSPIRE].
  20. [20]
    M. Hirsch, J. Romao, S. Skadhauge, J. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Ma, A 4 symmetry and neutrinos with very different masses, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Ma, Non-Abelian discrete symmetries and neutrino masses: two examples, New J. Phys. 6 (2004) 104 [hep-ph/0405152] [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. Ma, Tetrahedral family symmetry and the neutrino mixing matrix, Mod. Phys. Lett. A 20 (2005) 2601 [hep-ph/0508099] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E. Ma, Aspects of the tetrahedral neutrino mass matrix, Phys. Rev. D 72 (2005) 037301 [hep-ph/0505209] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.-L. Chen, M. Frigerio and E. Ma, Hybrid seesaw neutrino masses with A 4 family symmetry, Nucl. Phys. B 724 (2005) 423 [hep-ph/0504181] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Hirsch, A. Villanova del Moral, J. Valle and E. Ma, Predicting neutrinoless double beta decay, Phys. Rev. D 72 (2005) 091301 [Erratum ibid. D 72 (2005) 119904] [hep-ph/0507148] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [INSPIRE].
  28. [28]
    A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].ADSGoogle Scholar
  30. [30]
    B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M. Parida, A 4 symmetry and prediction of U e3 in a modified Altarelli-Feruglio model, Phys. Lett. B 638 (2006) 345 [hep-ph/0603059] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [INSPIRE].ADSGoogle Scholar
  32. [32]
    E. Ma, Suitability of A 4 as a family symmetry in grand unification, Mod. Phys. Lett. A 21 (2006) 2931 [hep-ph/0607190] [INSPIRE].ADSGoogle Scholar
  33. [33]
    E. Ma, Supersymmetric A 4 × Z 3 and A 4 realizations of neutrino tribimaximal mixing without and with corrections, Mod. Phys. Lett. A 22 (2007) 101 [hep-ph/0610342] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Morisi, M. Picariello and E. Torrente-Lujan, Model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [INSPIRE].ADSGoogle Scholar
  36. [36]
    F. Yin, Neutrino mixing matrix in the 3-3-1 model with heavy leptons and A 4 symmetry, Phys. Rev. D 75 (2007) 073010 [arXiv:0704.3827] [INSPIRE].ADSGoogle Scholar
  37. [37]
    F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A 4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    F. Bazzocchi, S. Morisi and M. Picariello, Embedding A 4 into left-right flavor symmetry: tribimaximal neutrino mixing and fermion hierarchy, Phys. Lett. B 659 (2008) 628 [arXiv:0710.2928] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A 4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [arXiv:0801.0181] [INSPIRE].ADSMATHGoogle Scholar
  40. [40]
    B. Brahmachari, S. Choubey and M. Mitra, The A 4 flavor symmetry and neutrino phenomenology, Phys. Rev. D 77 (2008) 073008 [Erratum ibid. D 77 (2008) 119901] [arXiv:0801.3554] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Adhikary and A. Ghosal, Nonzero U e3 , CP-violation and leptogenesis in a see-saw type softly broken A 4 symmetric model, Phys. Rev. D 78 (2008) 073007 [arXiv:0803.3582] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Ghosal, Recent models of neutrino masses and mixing, hep-ph/0612245 [INSPIRE].
  43. [43]
    B. Adhikary and A. Ghosal, Constraining it CP-violation in a softly broken A 4 symmetric Model, Phys. Rev. D 75 (2007) 073020 [hep-ph/0609193] [INSPIRE].ADSGoogle Scholar
  44. [44]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Hirsch, S. Morisi and J. Valle, Tri-bimaximal neutrino mixing and neutrinoless double beta decay, Phys. Rev. D 78 (2008) 093007 [arXiv:0804.1521] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P.H. Frampton and S. Matsuzaki, Renormalizable A 4 model for lepton sector, arXiv:0806.4592 [INSPIRE].
  47. [47]
    C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A 4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Morisi, Tri-bimaximal lepton mixing with A 4 × \( Z_2^3 \), Phys. Rev. D 79 (2009) 033008 [arXiv:0901.1080] [INSPIRE].ADSGoogle Scholar
  50. [50]
    P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Neutrino masses and tribimaximal mixing in Minimal renormalizable SUSY SU(5) grand unified model with A 4 flavor symmetry, Phys. Rev. D 79 (2009) 116010 [arXiv:0901.2236] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M.-C. Chen and S.F. King, A 4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [INSPIRE].ADSGoogle Scholar
  55. [55]
    Y. Lin, A predictive A 4 model, charged lepton hierarchy and tri-bimaximal sum rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [INSPIRE].ADSGoogle Scholar
  56. [56]
    Y. Lin, A dynamical approach to link low energy phases with leptogenesis, Phys. Rev. D 80 (2009) 076011 [arXiv:0903.0831] [INSPIRE].ADSGoogle Scholar
  57. [57]
    F. Bazzocchi, S. Morisi, M. Picariello and E. Torrente-Lujan, Embedding A 4 into SU(3) × U(1) flavor symmetry: large neutrino mixing and fermion mass hierarchy in SO(10) GUT, J. Phys. G 36 (2009) 015002 [arXiv:0802.1693] [INSPIRE].ADSGoogle Scholar
  58. [58]
    T. Fukuyama and H. Nishiura, Mass matrix of Majorana neutrinos, hep-ph/9702253 [INSPIRE].
  59. [59]
    W. Rodejohann, Broken μ-τ symmetry and leptonic CP violation, prepared for the 12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery, March 6–9, Venice, Italy (2007).Google Scholar
  60. [60]
    J.C. Gomez-Izquierdo and A. Perez-Lorenzana, Softly broken μτ symmetry in the minimal see-saw model, Phys. Rev. D 77 (2008) 113015 [arXiv:0711.0045] [INSPIRE].ADSGoogle Scholar
  61. [61]
    T. Baba, What does μ-τ symmetry imply about leptonic CP-violation?, Int. J. Mod. Phys. E 16 (2007) 1373 [INSPIRE].ADSGoogle Scholar
  62. [62]
    N. Nimai Singh, H. Zeen Devi and M. Patgiri, Phenomenology of neutrino mass matrices obeying μ-τ reflection symmetry, arXiv:0707.2713 [INSPIRE].
  63. [63]
    A.S. Joshipura and B.P. Kodrani, Complex CKM matrix, spontaneous CP-violation and generalized μ-τ symmetry, Phys. Lett. B 670 (2009) 369 [arXiv:0706.0953] [INSPIRE].ADSGoogle Scholar
  64. [64]
    B. Adhikary, Soft breaking of L μ -L τ symmetry: light neutrino spectrum and leptogenesis, Phys. Rev. D 74 (2006) 033002 [hep-ph/0604009] [INSPIRE].ADSGoogle Scholar
  65. [65]
    T. Baba and M. Yasue, Correlation between leptonic CP-violation and μ-τ symmetry breaking, Phys. Rev. D 75 (2007) 055001 [hep-ph/0612034] [INSPIRE].ADSGoogle Scholar
  66. [66]
    W. Grimus, Realizations of μ-τ interchange symmetry, Conf. Proc. C 060726 (2006) 312 [hep-ph/0610158] [INSPIRE].
  67. [67]
    Z.-z. Xing, H. Zhang and S. Zhou, Nearly tri-bimaximal neutrino mixing and CP-violation from μ-τ symmetry breaking, Phys. Lett. B 641 (2006) 189 [hep-ph/0607091] [INSPIRE].ADSGoogle Scholar
  68. [68]
    N. Haba and W. Rodejohann, A supersymmetric contribution to the neutrino mass matrix and breaking of μ-τ symmetry, Phys. Rev. D 74 (2006) 017701 [hep-ph/0603206] [INSPIRE].ADSGoogle Scholar
  69. [69]
    R. Mohapatra, S. Nasri and H.-B. Yu, Grand unification of μ-τ symmetry, Phys. Lett. B 636 (2006) 114 [hep-ph/0603020] [INSPIRE].ADSGoogle Scholar
  70. [70]
    Y. Ahn, S.K. Kang, C. Kim and J. Lee, Phased breaking of μ-τ symmetry and leptogenesis, Phys. Rev. D 73 (2006) 093005 [hep-ph/0602160] [INSPIRE].ADSGoogle Scholar
  71. [71]
    K. Fuki and M. Yasue, What does μ-τ symmetry imply in neutrino mixings?, Phys. Rev. D 73 (2006) 055014 [hep-ph/0601118] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Nasri, Implications of μτ symmetry on neutrinos and leptogenesis, Int. J. Mod. Phys. A 20 (2005) 6258 [INSPIRE].ADSGoogle Scholar
  73. [73]
    I. Aizawa and M. Yasue, A new type of complex neutrino mass texture and μ-τ symmetry, Phys. Rev. D 73 (2006) 015002 [hep-ph/0510132] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R. Mohapatra and W. Rodejohann, Broken μ-τ symmetry and leptonic CP-violation, Phys. Rev. D 72 (2005) 053001 [hep-ph/0507312] [INSPIRE].ADSGoogle Scholar
  75. [75]
    I. Aizawa, M. Ishiguro, M. Yasue and T. Kitabayashi, μ-τ permutation symmetry and neutrino mixing for a two-loop radiative mechanism, J. Korean Phys. Soc. 46 (2005) 597.Google Scholar
  76. [76]
    T. Kitabayashi and M. Yasue, μ-τ symmetry and maximal CP-violation, Phys. Lett. B 621 (2005) 133 [hep-ph/0504212] [INSPIRE].ADSGoogle Scholar
  77. [77]
    R. Mohapatra, S. Nasri and H.-B. Yu, Leptogenesis, μ-τ symmetry and θ 13, Phys. Lett. B 615 (2005) 231 [hep-ph/0502026] [INSPIRE].ADSGoogle Scholar
  78. [78]
    R.N. Mohapatra and S. Nasri, Leptogenesis and μ-τ symmetry, Phys. Rev. D 71 (2005) 033001 [hep-ph/0410369] [INSPIRE].ADSGoogle Scholar
  79. [79]
    R. Mohapatra, θ 13 as a probe of μτ symmetry for leptons, JHEP 10 (2004) 027 [hep-ph/0408187] [INSPIRE].ADSGoogle Scholar
  80. [80]
    I. Aizawa, M. Ishiguro, T. Kitabayashi and M. Yasue, Bilarge neutrino mixing and μ-τ permutation symmetry for two-loop radiative mechanism, Phys. Rev. D 70 (2004) 015011 [hep-ph/0405201] [INSPIRE].ADSGoogle Scholar
  81. [81]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].ADSGoogle Scholar
  82. [82]
    P.F. Harrison and W. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].ADSGoogle Scholar
  83. [83]
    T. Kitabayashi and M. Yasue, S 2L permutation symmetry for left-handed mu and tau families and neutrino oscillations in an SU(3)L × SU(1)N gauge model, Phys. Rev. D 67 (2003) 015006 [hep-ph/0209294] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Ghosal, A neutrino mass model with reflection symmetry, Mod. Phys. Lett. A 19 (2004) 2579 [INSPIRE].ADSGoogle Scholar
  85. [85]
    B. Adhikary, A. Ghosal and P. Roy, μ-τ symmetry, tribimaximal mixing and four zero neutrino Yukawa textures, JHEP 10 (2009) 040 [arXiv:0908.2686] [INSPIRE].ADSGoogle Scholar
  86. [86]
    B. Adhikary, M. Chakraborty and A. Ghosal, Scaling ansatz, four zero Yukawa textures and large θ 13, Phys. Rev. D 86 (2012) 013015 [arXiv:1205.1355] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A.S. Joshipura and W. Rodejohann, Scaling in the neutrino mass matrix, μ-τ symmetry and the see-saw mechanism, Phys. Lett. B 678 (2009) 276 [arXiv:0905.2126] [INSPIRE].ADSGoogle Scholar
  88. [88]
    R.N. Mohapatra and W. Rodejohann, Scaling in the neutrino mass matrix, Phys. Lett. B 644 (2007) 59 [hep-ph/0608111] [INSPIRE].ADSGoogle Scholar
  89. [89]
    A. Blum, R.N. Mohapatra and W. Rodejohann, Inverted mass hierarchy from scaling in the neutrino mass matrix: low and high energy phenomenology, Phys. Rev. D 76 (2007) 053003 [arXiv:0706.3801] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Obara, The possible textures in the seesaw realization of the strong scaling ansatz and the implications for thermal leptogenesis, arXiv:0712.2628 [INSPIRE].
  91. [91]
    A. Damanik, M. Satriawan, Muslim and P. Anggraita, Neutrino mass matrix from seesaw mechanism subjected to texture zero and invariant under a cyclic permutation, arXiv:0705.3290 [INSPIRE].
  92. [92]
    S. Goswami and A. Watanabe, Minimal seesaw textures with two heavy neutrinos, Phys. Rev. D 79 (2009) 033004 [arXiv:0807.3438] [INSPIRE].ADSGoogle Scholar
  93. [93]
    W. Grimus and L. Lavoura, Softly broken lepton number L e -L μ -L τ with non-maximal solar neutrino mixing, J. Phys. G 31 (2005) 683 [hep-ph/0410279] [INSPIRE].ADSGoogle Scholar
  94. [94]
    M.S. Berger and S. Santana, Combined flavor symmetry violation and lepton number violation in neutrino physics, Phys. Rev. D 74 (2006) 113007 [hep-ph/0609176] [INSPIRE].ADSGoogle Scholar
  95. [95]
    S. Goswami, S. Khan and W. Rodejohann, Minimal textures in seesaw mass matrices and their low and high energy phenomenology, Phys. Lett. B 680 (2009) 255 [arXiv:0905.2739] [INSPIRE].ADSGoogle Scholar
  96. [96]
    A. Merle and W. Rodejohann, The elements of the neutrino mass matrix: allowed ranges and implications of texture zeros, Phys. Rev. D 73 (2006) 073012 [hep-ph/0603111] [INSPIRE].ADSGoogle Scholar
  97. [97]
    J. Gluza and R. Szafron, Real and complex random neutrino mass matrices and θ 13, Phys. Rev. D 85 (2012) 047701 [arXiv:1111.7278] [INSPIRE].ADSGoogle Scholar
  98. [98]
    X.-G. He and S.K. Majee, Implications of recent data on neutrino mixing and lepton flavour violating decays for the Zee model, JHEP 03 (2012) 023 [arXiv:1111.2293] [INSPIRE].ADSGoogle Scholar
  99. [99]
    G. Mangano, G. Miele, S. Pastor, O. Pisanti and S. Sarikas, Updated BBN bounds on the cosmological lepton asymmetry for non-zero θ 13, Phys. Lett. B 708 (2012) 1 [arXiv:1110.4335] [INSPIRE].ADSGoogle Scholar
  100. [100]
    Q.-H. Cao, S. Khalil, E. Ma and H. Okada, Nonzero θ 13 for neutrino mixing in a supersymmetric B-L gauge model with T 7 lepton flavor symmetry, Phys. Rev. D 84 (2011) 071302 [arXiv:1108.0570] [INSPIRE].ADSGoogle Scholar
  101. [101]
    W. Chao and Y.-j. Zheng, Relatively large θ 13 from modification to the tri-bimaximal, bimaximal and democratic neutrino mixing matrices, JHEP 02 (2013) 044 [arXiv:1107.0738] [INSPIRE].ADSGoogle Scholar
  102. [102]
    D. Meloni, Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4, JHEP 10 (2011) 010 [arXiv:1107.0221] [INSPIRE].ADSGoogle Scholar
  103. [103]
    N. Haba and R. Takahashi, Predictions via large θ 13 from cascades, Phys. Lett. B 702 (2011) 388 [arXiv:1106.5926] [INSPIRE].ADSGoogle Scholar
  104. [104]
    A.B. Balantekin, The last neutrino mixing angle θ 13, J. Phys. Conf. Ser. 337 (2012) 012049 [arXiv:1106.5021] [INSPIRE].ADSGoogle Scholar
  105. [105]
    Double CHOOZ collaboration, P. Novella, Double CHOOZ: searching for θ 13 with reactor neutrinos, arXiv:1105.6079 [INSPIRE].
  106. [106]
    A.B. Balantekin, Neutrino interactions in astrophysics and the third neutrino mixing angle θ 13, AIP Conf. Proc. 1269 (2010) 195 [arXiv:1006.2836] [INSPIRE].ADSGoogle Scholar
  107. [107]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSGoogle Scholar
  108. [108]
    E.E. Jenkins and A.V. Manohar, Tribimaximal mixing, leptogenesis and θ 13, Phys. Lett. B 668 (2008) 210 [arXiv:0807.4176] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A.B. Balantekin and D. Yilmaz, Contrasting solar and reactor neutrinos with a non-zero value of θ 13, J. Phys. G 35 (2008) 075007 [arXiv:0804.3345] [INSPIRE].ADSGoogle Scholar
  110. [110]
    V. Barger et al., Neutrino mass hierarchy and octant determination with atmospheric neutrinos, Phys. Rev. Lett. 109 (2012) 091801 [arXiv:1203.6012] [INSPIRE].ADSGoogle Scholar
  111. [111]
    Y.H. Ahn and S.K. Kang, Non-zero θ 13 and CP-violation in a model with A 4 flavor symmetry, Phys. Rev. D 86 (2012) 093003 [arXiv:1203.4185] [INSPIRE].ADSGoogle Scholar
  112. [112]
    B. Brahmachari and A. Raychaudhuri, Perturbative generation of θ 13 from tribimaximal neutrino mixing, Phys. Rev. D 86 (2012) 051302 [arXiv:1204.5619] [INSPIRE].ADSGoogle Scholar
  113. [113]
    H. Ishimori and E. Ma, New simple A 4 neutrino model for nonzero θ 13 and large δ CP, Phys. Rev. D 86 (2012) 045030 [arXiv:1205.0075] [INSPIRE].ADSGoogle Scholar
  114. [114]
    R. Dutta, U. Ch, A.K. Giri and N. Sahu, Perturbative bottom-up approach for neutrino mass matrix in light of large θ 13 and role of lightest neutrino mass, arXiv:1303.3357 [INSPIRE].
  115. [115]
    Y. Koide, Quark and lepton mass matrices with a cyclic permutation invariant form, hep-ph/0005137 [INSPIRE].
  116. [116]
    A. Damanik, M. Satriawan, P. Anggraita, A. Hermanto and Muslim, Neutrino mass matrix from seesaw mechanism with heavy majorana neutrino subject to texture zero and invariant under a cyclic permutation, J. Theor. Comput. Stud. 8 (2008) 0102 [arXiv:0710.1742] [INSPIRE].
  117. [117]
    A. Damanik, Neutrino mass matrix subject to μ-τ symmetry and invariant under a cyclic permutation, arXiv:1004.1457 [INSPIRE].
  118. [118]
    C.H. Albright, Overview of neutrino mixing models and ways to differentiate among Them, arXiv:0905.0146 [INSPIRE].
  119. [119]
    E. Ma, S 3 Z 3 model of lepton mass matrices, Phys. Rev. D 44 (1991) 587 [INSPIRE].ADSGoogle Scholar
  120. [120]
    Y. Koide, Universal seesaw mass matrix model with an S 3 symmetry, Phys. Rev. D 60 (1999) 077301 [hep-ph/9905416] [INSPIRE].ADSGoogle Scholar
  121. [121]
    M. Tanimoto, Large mixing angle MSW solution in S 3 flavor symmetry, Phys. Lett. B 483 (2000) 417 [hep-ph/0001306] [INSPIRE].ADSGoogle Scholar
  122. [122]
    J. Kubo, Majorana phase in minimal S 3 invariant extension of the standard model, Phys. Lett. B 578 (2004) 156 [Erratum ibid. B 619 (2005) 387–388] [hep-ph/0309167] [INSPIRE].ADSGoogle Scholar
  123. [123]
    F. Caravaglios and S. Morisi, Neutrino masses and mixings with an S 3 family permutation symmetry, hep-ph/0503234 [INSPIRE].
  124. [124]
    S. Morisi and M. Picariello, The Flavor physics in unified gauge theory from an S 3P discrete symmetry, Int. J. Theor. Phys. 45 (2006) 1267 [hep-ph/0505113] [INSPIRE].Google Scholar
  125. [125]
    P. Harrison and W. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S 3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [INSPIRE].MathSciNetADSGoogle Scholar
  126. [126]
    W. Grimus and L. Lavoura, S 3 × Z 2 model for neutrino mass matrices, JHEP 08 (2005) 013 [hep-ph/0504153] [INSPIRE].MathSciNetADSGoogle Scholar
  127. [127]
    R. Mohapatra, S. Nasri and H.-B. Yu, S 3 symmetry and tri-bimaximal mixing, Phys. Lett. B 639 (2006) 318 [hep-ph/0605020] [INSPIRE].ADSGoogle Scholar
  128. [128]
    N. Haba and K. Yoshioka, Discrete flavor symmetry, dynamical mass textures and grand unification, Nucl. Phys. B 739 (2006) 254 [hep-ph/0511108] [INSPIRE].ADSGoogle Scholar
  129. [129]
    C.-Y. Chen and L. Wolfenstein, Consequences of approximate S 3 symmetry of the neutrino mass matrix, Phys. Rev. D 77 (2008) 093009 [arXiv:0709.3767] [INSPIRE].ADSGoogle Scholar
  130. [130]
    S. Kaneko, H. Sawanaka, T. Shingai, M. Tanimoto and K. Yoshioka, New approach to texture-zeros with S 3 symmetry: flavor symmetry and vacuum aligned mass textures, hep-ph/0703250 [INSPIRE].
  131. [131]
    Y. Koide, S 3 symmetry and neutrino masses and mixings, Eur. Phys. J. C 50 (2007) 809 [hep-ph/0612058] [INSPIRE].ADSGoogle Scholar
  132. [132]
    Y. Koide, Permutation symmetry S 3 and VEV structure of flavor-triplet Higgs scalars, Phys. Rev. D 73 (2006) 057901 [hep-ph/0509214] [INSPIRE].ADSGoogle Scholar
  133. [133]
    T. Teshima, Flavor mass and mixing and S 3 symmetry: an S 3 invariant model reasonable to all, Phys. Rev. D 73 (2006) 045019 [hep-ph/0509094] [INSPIRE].ADSGoogle Scholar
  134. [134]
    L. Lavoura and E. Ma, Two predictive supersymmetric S 3 × Z 2 models for the quark mass matrices, Mod. Phys. Lett. A 20 (2005) 1217 [hep-ph/0502181] [INSPIRE].ADSGoogle Scholar
  135. [135]
    T. Araki, J. Kubo and E.A. Paschos, S 3 flavor symmetry and leptogenesis, Eur. Phys. J. C 45 (2006) 465 [hep-ph/0502164] [INSPIRE].ADSGoogle Scholar
  136. [136]
    N. Haba, A. Watanabe and K. Yoshioka, Twisted flavors and tri/bi-maximal neutrino mixing, Phys. Rev. Lett. 97 (2006) 041601 [hep-ph/0603116] [INSPIRE].ADSGoogle Scholar
  137. [137]
    F. Feruglio and Y. Lin, Fermion mass hierarchies and flavour mixing from a minimal discrete symmetry, Nucl. Phys. B 800 (2008) 77 [arXiv:0712.1528] [INSPIRE].ADSGoogle Scholar
  138. [138]
    A.S. Joshipura and S.D. Rindani, Vacuum solutions of neutrino anomalies through a softly broken U(1) symmetry, Eur. Phys. J. C 14 (2000) 85 [hep-ph/9811252] [INSPIRE].ADSGoogle Scholar
  139. [139]
    R. Mohapatra, A. Perez-Lorenzana and C.A. de Sousa Pires, Type II seesaw and a gauge model for the bimaximal mixing explanation of neutrino puzzles, Phys. Lett. B 474 (2000) 355 [hep-ph/9911395] [INSPIRE].ADSGoogle Scholar
  140. [140]
    Q. Shafi and Z. Tavartkiladze, Anomalous flavor U(1): predictive texture for bimaximal neutrino mixing, Phys. Lett. B 482 (2000) 145 [hep-ph/0002150] [INSPIRE].ADSGoogle Scholar
  141. [141]
    L. Lavoura, New model for the neutrino mass matrix, Phys. Rev. D 62 (2000) 093011 [hep-ph/0005321] [INSPIRE].ADSGoogle Scholar
  142. [142]
    W. Grimus and L. Lavoura, A neutrino mass matrix with seesaw mechanism and two loop mass splitting, Phys. Rev. D 62 (2000) 093012 [hep-ph/0007011] [INSPIRE].ADSGoogle Scholar
  143. [143]
    T. Kitabayashi and M. Yasue, Radiatively induced neutrino masses and oscillations in an SU(3)L × U(1)N gauge model, Phys. Rev. D 63 (2001) 095002 [hep-ph/0010087] [INSPIRE].ADSGoogle Scholar
  144. [144]
    A. Aranda, C.D. Carone and P. Meade, U(2) like flavor symmetries and approximate bimaximal neutrino mixing, Phys. Rev. D 65 (2002) 013011 [hep-ph/0109120] [INSPIRE].ADSGoogle Scholar
  145. [145]
    K.S. Babu and R.N. Mohapatra, Predictive schemes for bimaximal neutrino mixings, Phys. Lett. B 532 (2002) 77 [hep-ph/0201176] [INSPIRE].ADSGoogle Scholar
  146. [146]
    H.-J. He, D.A. Dicus and J.N. Ng, Minimal schemes for large neutrino mixings with inverted hierarchy, Phys. Lett. B 536 (2002) 83 [hep-ph/0203237] [INSPIRE].ADSGoogle Scholar
  147. [147]
    H. Goh, R. Mohapatra and S.-P. Ng, Testing neutrino mass matrices with approximate L e -L μ -L τ symmetry, Phys. Lett. B 542 (2002) 116 [hep-ph/0205131] [INSPIRE].ADSGoogle Scholar
  148. [148]
    G.K. Leontaris, J. Rizos and A. Psallidas, Majorana neutrino masses from anomalous U(1) symmetries, Phys. Lett. B 597 (2004) 182 [hep-ph/0404129] [INSPIRE].ADSGoogle Scholar
  149. [149]
    S. Dev, R.R. Gautam and L. Singh, Broken S 3 symmetry in the neutrino mass matrix and non-zero θ 13, Phys. Lett. B 708 (2012) 284 [arXiv:1201.3755] [INSPIRE].ADSGoogle Scholar
  150. [150]
    S. Dev, S. Gupta and R.R. Gautam, Broken S 3 symmetry in the neutrino mass matrix, Phys. Lett. B 702 (2011) 28 [arXiv:1106.3873] [INSPIRE].ADSGoogle Scholar
  151. [151]
    S. Zhou, Relatively large θ 13 and nearly maximal θ 23 from the approximate S 3 symmetry of lepton mass matrices, Phys. Lett. B 704 (2011) 291 [arXiv:1106.4808] [INSPIRE].ADSGoogle Scholar
  152. [152]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  153. [153]
    E. Giusarma, R. de Putter, S. Ho and O. Mena, Constraints on neutrino masses from Planck and galaxy clustering data, Phys. Rev. D 88 (2013) 063515 [arXiv:1306.5544] [INSPIRE].ADSGoogle Scholar
  154. [154]
    EXO collaboration, M. Auger et al., Search for neutrinoless double-beta decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].ADSGoogle Scholar
  155. [155]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  156. [156]
    M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Biswajit Adhikary
    • 1
  • Mainak Chakraborty
    • 2
  • Ambar Ghosal
    • 2
  1. 1.Department of PhysicsGurudas CollegeKolkataIndia
  2. 2.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations