D-brane bremsstrahlung



We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.


Brane Dynamics in Gauge Theories D-branes 


  1. [1]
    C. Bachas and M. Porrati, Pair creation of open strings in an electric field, Phys. Lett. B 296 (1992) 77 [hep-th/9209032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    L. McAllister and I. Mitra, Relativistic D-brane scattering is extremely inelastic, JHEP 02 (2005) 019 [hep-th/0408085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Brax and E. Cluzel, Brane bremsstrahlung in DBI inflation, JCAP 03 (2010) 016 [arXiv:0912.0806] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Abou-Zeid and M.S. Costa, Radiation from accelerated branes, Phys. Rev. D 61 (2000) 106007 [hep-th/9909148] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    A. Mironov and A. Morozov, Radiation beyond four space-time dimensions, Theor. Math. Phys. 156 (2008) 1209 [hep-th/0703097] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    P. Kazinski, S. Lyakhovich and A. Sharapov, Radiation reaction and renormalization in classical electrodynamics of point particle in any dimension, Phys. Rev. D 66 (2002) 025017 [hep-th/0201046] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Peters, Gravitational radiation from relativistic systems, Phys. Rev. D 5 (1972) 2476 [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Price and V. Sandberg, Role of constraining forces for ultrarelativistic particle motion as a source of gravitational radiation, Phys. Rev. D 8 (1973) 1640 [INSPIRE].ADSGoogle Scholar
  12. [12]
    V. Cardoso, O.J. Dias and J.P. Lemos, Gravitational radiation in D-dimensional space-times, Phys. Rev. D 67 (2003) 064026 [hep-th/0212168] [INSPIRE].ADSGoogle Scholar
  13. [13]
    V. Cardoso, M. Cavaglia and J.-Q. Guo, Gravitational Larmor formula in higher dimensions, Phys. Rev. D 75 (2007) 084020 [hep-th/0702138] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    R. Breuer, Gravitational perturbation theory and synchrotron radiation, Springer-Verlag, Berlin Germany (1975).Google Scholar
  15. [15]
    B. Reville and J.G. Kirk, Linear acceleration emission in pulsar magnetospheres, Astrophys. J. 715 (2010) 186 [arXiv:1004.0725] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Schwinger, L.L. DeRead, K.A. Milton and W. Tsai, Classical electrodynamics, Perseus Books, Reading U.S.A. (1998).Google Scholar
  17. [17]
    T. Harko and K. Cheng, Unified classical and quantum radiation mechanism for ultrarelativistic electrons in curved and inhomogeneous magnetic fields, Mon. Not. Roy. Astron. Soc. 335 (2002) 99 [astro-ph/0204170] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Sundborg, Thermodynamics of superstrings at high-energy densities, Nucl. Phys. B 254 (1985) 583 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Parentani and R. Potting, The accelerating observer and the hagedorn temperature, Phys. Rev. Lett. 63 (1989) 945 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998)CrossRefGoogle Scholar
  21. [21]
    M. Kleban, K. Krishnaiyengar and M. Porrati, Flux discharge cascades in various dimensions, JHEP 11 (2011) 096 [arXiv:1108.6102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. D’Amico, R. Gobbetti, M. Kleban and M. Schillo, Unwinding inflation, JCAP 03 (2013) 004 [arXiv:1211.4589] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    T. Banks and W. Fischler, A model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].
  24. [24]
    D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Hamilton and J. Murugan, On the shoulders of Giants: quantum gravity and braneworld stability, arXiv:0806.3273 [INSPIRE].
  27. [27]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    N. Agarwal, R. Bean, L. McAllister and G. Xu, Universality in D-brane inflation, JCAP 09 (2011) 002 [arXiv:1103.2775] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Baumann and L. McAllister, A microscopic limit on gravitational waves from D-brane inflation, Phys. Rev. D 75 (2007) 123508 [hep-th/0610285] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A.E. Romano and M. Sasaki, Effects of particle production during inflation, Phys. Rev. D 78 (2008) 103522 [arXiv:0809.5142] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Brax and E. Cluzel, Trapped brane features in DBI inflation, arXiv:1010.4462 [INSPIRE].
  34. [34]
    N. Barnaby, Nongaussianity from particle production during inflation, Adv. Astron. 2010 (2010) 156180 [arXiv:1010.5507] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Senatore, E. Silverstein and M. Zaldarriaga, New Sources of Gravitational Waves during Inflation, arXiv:1109.0542 [INSPIRE].
  36. [36]
    D. Carney, W. Fischler, E.D. Kovetz, D. Lorshbough and S. Paban, Rapid field excursions and the inflationary tensor spectrum, JHEP 11 (2012) 042 [arXiv:1209.3848] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  38. [38]
    L. Kofman et al., Beauty is attractive: moduli trapping at enhanced symmetry points, JHEP 05 (2004) 030 [hep-th/0403001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S.P. Kim and D.N. Page, Schwinger pair production via instantons in a strong electric field, Phys. Rev. D 65 (2002) 105002 [hep-th/0005078] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Ambjørn, Y. Makeenko, G. Semenoff and R. Szabo, String theory in electromagnetic fields, JHEP 02 (2003) 026 [hep-th/0012092] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Burgess, P. Martineau, F. Quevedo and R. Rabadán, Branonium, JHEP 06 (2003) 037 [hep-th/0303170] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Avery, Hyperspherical Harmonics: Applications in Quantum Theory, Kluwer Academic Publishers, Dordrecht Netherlands (1989).CrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsCornell UniversityIthacaU.S.A.

Personalised recommendations