Dressing the electron star in a holographic superconductor

  • Francesco Nitti
  • Giuseppe Policastro
  • Thomas Vanel
Open Access


We construct new asymptotically AdS4 solutions dual to 2+1 CFTs at finite density and zero temperature by combining the ingredients of the electron star and the holographic superconductor. The solutions, which we call compact electron stars, contain both a fermionic fluid and charged scalar hair in the bulk. We show that the new solutions are thermodynamically favoured in the region of parameter space where they exist. Along the boundary of this region, we find evidence for a continuous phase transition between the holographic superconductor and the compact star solution.


Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  3. [3]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  4. [4]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Adam, B. Crampton, J. Sonner and B. Withers, Bosonic fractionalisation transitions, JHEP 01 (2013) 127 [arXiv:1208.3199] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.A. Hartnoll, D.M. Hofman and A. Tavanfar, Holographically smeared Fermi surface: quantum oscillations and Luttinger count in electron stars, Europhys. Lett. 95 (2011) 31002 [arXiv:1011.2502] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.A. Hartnoll, D.M. Hofman and D. Vegh, Stellar spectroscopy: fermions and holographic Lifshitz criticality, JHEP 08 (2011) 096 [arXiv:1105.3197] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84 (2011) 066009 [arXiv:1107.5321] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Allais, J. McGreevy and S.J. Suh, A quantum electron star, Phys. Rev. Lett. 108 (2012) 231602 [arXiv:1202.5308] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Allais and J. McGreevy, How to construct a gravitating quantum electron star, arXiv:1306.6075 [INSPIRE].
  18. [18]
    L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001 [arXiv:1104.5022] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Edalati, K.W. Lo and P.W. Phillips, Neutral order parameters in metallic criticality in D=2+1 from a hairy electron star, Phys. Rev. D 84 (2011) 066007 [arXiv:1106.3139] [INSPIRE].ADSGoogle Scholar
  20. [20]
    Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Bose-Fermi competition in holographic metals, arXiv:1307.4572 [INSPIRE].
  21. [21]
    B. Goutéraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.A. Hartnoll and P. Petrov, Electron star birth: a continuous phase transition at nonzero density, Phys. Rev. Lett. 106 (2011) 121601 [arXiv:1011.6469] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Sonner, A rotating holographic superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Francesco Nitti
    • 1
  • Giuseppe Policastro
    • 2
  • Thomas Vanel
    • 3
  1. 1.APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU (UMR du CNRS 7164)Obs. de Paris, Sorbonne Paris Cité, Bâtiment CondorcetParis Cedex 13France
  2. 2.Laboratoire de Physique Théorique, Ecole Normale Supérieure (UMR du CNRS 8549)Paris Cedex 05France
  3. 3.Laboratoire de Physique Théorique et Hautes Energies (UMR du CNRS 7589)Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations