Advertisement

Journal of High Energy Physics

, 2012:150 | Cite as

Asymmetric origin for gravitino relic density in the hybrid gravity-gauge mediated supersymmetry breaking

  • Zhaofeng Kang
  • Tianjun Li
Article

Abstract

We propose the hybrid gravity-gauge mediated supersymmetry breaking where the gravitino mass is about several GeV. The strong constraints on supersymmetry viable parameter space from the CMS and ATLAS experiments at the LHC can be relaxed due to the heavy colored supersymmetric particles, and it is consistent with null results in the dark matter (DM) direct search experiments such as XENON100. In particular, the possible maximal flavor and CP violations from the relatively small gravity mediation may naturally account for the recent LHCb anomaly. In addition, because the gravitino mass is around the asymmetric DM mass, we propose the asymmetric origin of the gravitino relic density and solve the cosmological coincident problem on the DM and baryon densities ΩDM : Ω B ≈ 5 : 1. The gravitino relic density arises from asymmetric metastable particle (AMP) late decay. However, we show that there is no AMP candidate in the minimal supersymmetric Standard Model (SM) due to the robust gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized in the well motivated supersymmetric SMs with vector-like particles or continuous U(1) R symmetry. Especially, the lightest CP-even Higgs boson mass can be lifted in the supersymmetric SMs with vector-like particles.

Keywords

Supersymmetric Standard Model Supersymmetry Breaking 

References

  1. [1]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    LHCb collaboration, A search for time-integrated CP-violation in D 0h h + decays, LHCb-CONF-2011-061(2011).
  4. [4]
    XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    XENON100 collaboration, E. Aprile et al., First dark matter results from the XENON100 experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Farina et al., Implications of XENON100 and LHC results for Dark Matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].
  8. [8]
    S.M. Barr, R.S. Chivukula and E. Farhi, electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a common origin for matter and dark matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev. D 83 (2011) 055008 [arXiv:1009.2690] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N.F. Bell, K. Petraki, I.M. Shoemaker and R.R. Volkas, Pangenesis in a baryon-symmetric universe: dark and visible matter via the Affleck-Dine mechanism, Phys. Rev. D 84 (2011) 123505 [arXiv:1105.3730] [INSPIRE].ADSGoogle Scholar
  16. [16]
    Y. Cui, L. Randall and B. Shuve, Emergent dark matter, baryon and lepton numbers, JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Arina and N. Sahu, Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis, Nucl. Phys. B 854 (2012) 666 [arXiv:1108.3967] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Barr, The unification and cogeneration of dark matter and baryonic matter, Phys. Rev. D 85 (2012) 013001 [arXiv:1109.2562] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Petraki, M. Trodden and R.R. Volkas, Visible and dark matter from a first-order phase transition in a baryon-symmetric universe, JCAP 02 (2012) 044 [arXiv:1111.4786] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.L. Feng, S. Su and F. Takayama, Supergravity with a gravitino LSP, Phys. Rev. D 70 (2004) 075019 [hep-ph/0404231] [INSPIRE].ADSGoogle Scholar
  23. [23]
    ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  24. [24]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs Boson Mass, Sparticle Spectrum and Little Hierarchy Problem in Extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Kurosawa, N. Maru and T. Yanagida, Nonanomalous R symmetry in supersymmetric unified theories of quarks and leptons, Phys. Lett. B 512 (2001) 203 [hep-ph/0105136] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.L. Evans, M. Ibe and T.T. Yanagida, Probing Extra Matter in Gauge Mediation Through the Lightest Higgs Boson Mass, arXiv:1108.3437 [INSPIRE].
  28. [28]
    S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.P. Martin, Raising the Higgs mass with Yukawa couplings for isotriplets in vector-like extensions of minimal supersymmetry, Phys. Rev. D 82 (2010) 055019 [arXiv:1006.4186] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y. Huo, T. Li, D.V. Nanopoulos and C. Tong, The Lightest CP-Even Higgs Boson Mass in the Testable Flipped SU(5) × U (1)X Models from F-theory, Phys. Rev. D 85 (2012) 116002 [arXiv:1109.2329] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, A Little Solution to the Little Hierarchy Problem: A Vector-like Generation, Phys. Rev. D 81 (2010) 055016 [arXiv:0910.3020] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric sneutrino dark matter in the NMSSM with minimal inverse seesaw, arXiv:1102.5644 [INSPIRE].
  34. [34]
    Ya.B. Zeldovich, Survey of modern cosmology, Adv. Astron. Astrophys. 3 (1965) 241.Google Scholar
  35. [35]
    H.-Y. Chiu, Symmetry between particle and anti-particle populations in the universe, Phys. Rev. Lett. 17 (1966) 712 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Steigman, Cosmology confronts particle physics, Ann. Rev. Nucl. Part. Sci. 29 (1979) 313 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Arkani-Hamed, A. Delgado and G. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M.R. Buckley and S. Profumo, Regenerating a symmetry in asymmetric dark matter, Phys. Rev. Lett. 108 (2012) 011301 [arXiv:1109.2164] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Cirelli, P. Panci, G. Servant and G. Zaharijas, Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter, JCAP 03 (2012) 015 [arXiv:1110.3809] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C. Kouvaris and P. Tinyakov, Excluding light asymmetric bosonic dark matter, Phys. Rev. Lett. 107 (2011) 091301 [arXiv:1104.0382] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S.D. McDermott, H.-B. Yu and K.M. Zurek, Constraints on scalar asymmetric dark matter from black hole formation in neutron stars, Phys. Rev. D 85 (2012) 023519 [arXiv:1103.5472] [INSPIRE].ADSGoogle Scholar
  42. [42]
    C. Kouvaris, Limits on self-interacting dark matter, Phys. Rev. Lett. 108 (2012) 191301 [arXiv:1111.4364] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, Light dark matter from the U(1)X Sector in the NMSSM with gauge mediation, JCAP 01 (2011) 028 [arXiv:1008.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H. Pagels and J.R. Primack, Supersymmetry, cosmology and new TeV physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.L. Feng, M. Kamionkowski and S.K. Lee, Light gravitinos at colliders and implications for cosmology, Phys. Rev. D 82 (2010) 015012 [arXiv:1004.4213] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Asaka, K. Hamaguchi and K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 490 (2000) 136 [hep-ph/0005136] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Pradler and F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [INSPIRE].ADSGoogle Scholar
  49. [49]
    K.-Y. Choi, L. Roszkowski and R. Ruiz de Austri, Determining reheating temperature at colliders with axino or gravitino dark matter, JHEP 04 (2008) 016 [arXiv:0710.3349] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [hep-ph/0012052] [INSPIRE].
  51. [51]
    G. Hiller, Y. Hochberg and Y. Nir, Flavor changing processes in supersymmetric models with hybrid gauge- and gravity-mediation, JHEP 03 (2009) 115 [arXiv:0812.0511] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Isidori, J.F. Kamenik, Z. Ligeti and G. Perez, Implications of the LHCb evidence for charm CP-violation, Phys. Lett. B 711 (2012) 46 [arXiv:1111.4987] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Brod, A.L. Kagan and J. Zupan, Size of direct CP-violation in singly Cabibbo-suppressed D decays, Phys. Rev. D 86 (2012) 014023 [arXiv:1111.5000] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K. Wang and G. Zhu, Can Up FCNC solve the ΔA CP puzzle?, Phys. Lett. B 709 (2012) 362 [arXiv:1111.5196] [INSPIRE].ADSGoogle Scholar
  55. [55]
    Y. Grossman, A.L. Kagan and Y. Nir, New physics and CP-violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75 (2007) 036008 [hep-ph/0609178] [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  57. [57]
    V. Barger, J. Jiang, P. Langacker and T. Li, String scale gauge coupling unification with vector-like exotics and non-canonical U(1)Y normalization, Int. J. Mod. Phys. A 22 (2007) 6203 [hep-ph/0612206] [INSPIRE].ADSGoogle Scholar
  58. [58]
    C. Liu, Supersymmetry and vector-like extra generation, Phys. Rev. D 80 (2009) 035004 [arXiv:0907.3011] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J.E. Kim and H.P. Nilles, The μ-problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    E. Chun, J.E. Kim and H.P. Nilles, A natural solution of the mu problem with a composite axion in the hidden sector, Nucl. Phys. B 370 (1992) 105 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Z. Kang, T. Li, T. Liu and J.M. Yang, The minimal solution to the μ/B μ problem in gauge mediation, JHEP 04 (2012) 016 [arXiv:1109.4993] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S.P. Martin, A supersymmetry primer, in Advanced Series on Directions in High Energy Physics. Vol. 18: Perspectives on supersymmetry, G.L. Kane eds., World Scientific, Singapore (1998) [hep-ph/9709356] [INSPIRE].Google Scholar
  63. [63]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    W. Lin, D. Huang, X. Zhang and R.H. Brandenberger, Nonthermal production of WIMPs and the subgalactic structure of the universe, Phys. Rev. Lett. 86 (2001) 954 [astro-ph/0009003] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    H.K. Dreiner and G.G. Ross, Sphaleron erasure of primordial baryogenesis, Nucl. Phys. B 410 (1993) 188 [hep-ph/9207221] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Inui, T. Ichihara, Y. Mimura and N. Sakai, Cosmological baryon asymmetry in supersymmetric Standard Models and heavy particle effects, Phys. Lett. B 325 (1994) 392 [hep-ph/9310268] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].ADSGoogle Scholar
  68. [68]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  69. [69]
    K. Benakli and M. Goodsell, Dirac gauginos, gauge mediation and unification, Nucl. Phys. B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    L. Hall and L. Randall, U(1)R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    L. Randall and N. Rius, The minimal U(1)R symmetric model revisited, Phys. Lett. B 286 (1992) 299 [INSPIRE].ADSGoogle Scholar
  72. [72]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    F. D’Eramo, L. Fei and J. Thaler, Dark matter assimilation into the baryon asymmetry, JCAP 03 (2012) 010 [arXiv:1111.5615] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of SciencesBeijingP.R. China
  2. 2.George P. and Cynthia W. Mitchell Institute for Fundamental PhysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations