Advertisement

Journal of High Energy Physics

, 2012:142 | Cite as

5-dim superconformal index with enhanced E n global symmetry

  • Hee-Cheol Kim
  • Sung-Soo Kim
  • Kimyeong Lee
Article

Abstract

The five-dimensional \( \mathcal{N}=1 \) supersymmetric gauge theory with Sp(N) gauge group and SO(2N f ) flavor symmetry describes the physics on N D4-branes with N f D8-branes on top of a single O8 orientifold plane in Type I′ theory. This theory is known to be superconformal at the strong coupling limit with the enhanced global symmetry \( {E_{{N_f +1}}} \) for N f ≤ 7. In this work we calculate the superconformal index on S 1 × S 4 for the Sp(1) gauge theory by the localization method and confirm such enhancement of the global symmetry at the superconformal limit for N f ≤ 5 to a few leading orders in the chemical potential. Both perturbative and (anti)instanton contributions are present in this calculation. For N f = 6, 7 cases some issues related the pole structure of the instanton calculation could not be resolved and here we could provide only some suggestive answer for the leading contributions to the index. For the Sp(N) case, similar issues related to the pole structure appear.

Keywords

Supersymmetric gauge theory Nonperturbative Effects Chern-Simons Theories 

References

  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces and toroidal compactification of the N = 1 six-dimensional E 8 theory, Nucl. Phys. B 487 (1997) 93 [hep-th/9610251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    U.H. Danielsson, G. Ferretti, J. Kalkkinen and P. Stjernberg, Notes on supersymmetric gauge theories in five-dimensions and six-dimensions, Phys. Lett. B 405 (1997) 265 [hep-th/9703098] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    T. Kugo and K. Ohashi, Off-shell D = 5 supergravity coupled to matter Yang-Mills system, Prog. Theor. Phys. 105 (2001) 323 [hep-ph/0010288] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    E. Bergshoeff, S. Cucu, M. Derix, T. de Wit, R. Halbersma, et al., Weyl multiplets of N = 2 conformal supergravity in five-dimensions, JHEP 06 (2001) 051 [hep-th/0104113] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Bergshoeff, S. Cucu, T. De Wit, J. Gheerardyn, R. Halbersma, et al., Superconformal N = 2, D = 5 matter with and without actions, JHEP 10 (2002) 045 [hep-th/0205230] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2,0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].MathSciNetMATHGoogle Scholar
  12. [12]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Lambert and P. Richmond, (2,0) Supersymmetry and the Light-Cone Description of M5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Romans, The F(4) Gauged Supergravity In Six-Dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [INSPIRE].Google Scholar
  19. [19]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Polchinski and E. Witten, Evidence for heterotic - type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Polchinski, S. Chaudhuri and C.V. Johnson, Notes on D-branes, hep-th/9602052 [INSPIRE].
  25. [25]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    J. Gomis, T. Okuda and V. Pestun, Exact Results fort Hooft Loops in Gauge Theories on S 4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.F. Atiyah, Elliptic operators and compact groups, in Lecture Notes in Mathematics 401 Springer-Verlag (1974).Google Scholar
  28. [28]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn - deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetMATHGoogle Scholar
  29. [29]
    S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  30. [30]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  31. [31]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  32. [32]
    H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., math/0306198 [INSPIRE].
  33. [33]
    N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    S. Shadchin, On certain aspects of string theory/gauge theory correspondence, hep-th/0502180 [INSPIRE].
  35. [35]
    S. Kim, K.-M. Lee and S. Lee, Dyonic Instantons in 5-dim Yang-Mills Chern-Simons Theories, JHEP 08 (2008) 064 [arXiv:0804.1207] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Collie and D. Tong, Instantons, Fermions and Chern-Simons Terms, JHEP 07 (2008) 015 [arXiv:0804.1772] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    Y. Tachikawa, Five-dimensional Chern-Simons terms and Nekrasovs instanton counting, JHEP 02 (2004) 050 [hep-th/0401184] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M. Mariño and N. Wyllard, A Note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP 10 (2004) 037 [hep-th/0408090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, JHEP 03 (2012) 017 [arXiv:1004.1222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M.R. Douglas, Gauge fields and D-branes, J. Geom. Phys. 28 (1998) 255 [hep-th/9604198] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    O. Aharony, M. Berkooz, S. Kachru and E. Silverstein, Matrix description of (1,0) theories in six-dimensions, Phys. Lett. B 420 (1998) 55 [hep-th/9709118] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    O. Bergman, M.R. Gaberdiel and G. Lifschytz, String creation and heterotic type-Iduality, Nucl. Phys. B 524 (1998) 524 [hep-th/9711098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J. Kallen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Kallen, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, arXiv:1206.6339 [INSPIRE].
  48. [48]
    N. Hama and K. Hosomichi, Seiberg-Witten Theories on Ellipsoids, JHEP 09 (2012) 033 [arXiv:1206.6359] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    Y. Imamura and D. Yokoyama, N=2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].ADSGoogle Scholar
  51. [51]
    F. Dolan, V. Spiridonov and G. Vartanov, From 4d superconformal indices to 3d partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    Y. Imamura, Relation between the 4d superconformal index and the S 3 partition function, JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    F. Benini, T. Nishioka and M. Yamazaki, 4d Index to 3d Index and 2d TQFT, Phys. Rev. D 86 (2012) 065015 [arXiv:1109.0283] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Gadde and W. Yan, Reducing the 4d Index to the S 3 Partition Function, arXiv:1104.2592 [INSPIRE].
  55. [55]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS 6 interpretation of 5 − D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    A. Brandhuber and Y. Oz, The D-4 - D-8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].MathSciNetADSGoogle Scholar
  58. [58]
    O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS 6 duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    M. Atiyah, N.J. Hitchin, V. Drinfeld and Y. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    G.W. Moore, N. Nekrasov and S. Shatashvili, D particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  62. [62]
    J. Choi, S. Lee and J. Song, Superconformal Indices for Orbifold Chern-Simons Theories, JHEP 03 (2009) 099 [arXiv:0811.2855] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    R. Feger and T.W. Kephart, LieART - A Mathematica Application for Lie Algebras and Representation Theory, arXiv:1206.6379 [INSPIRE].
  64. [64]
    LieART project home page: http://lieart.hepforge.org.

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Korea Institute for Advanced StudySeoulKorea

Personalised recommendations