Advertisement

Journal of High Energy Physics

, 2012:117 | Cite as

The complete one-loop spin chain of \( \mathcal{N} \) = 1 SQCD

  • Pedro Liendo
  • Leonardo Rastelli
Article

Abstract

We evaluate the complete planar one-loop dilation operator of \( \mathcal{N} \) = 1 Super QCD, at the large N Banks-Zaks fixed point near the upper edge of the superconformal window. The spin-chain Hamiltonian turns out to be entirely fixed by the constraints of superconformal symmetry, as in \( \mathcal{N} \) = 4 Super Yang-Mills and in \( \mathcal{N} \) = 2 SuperConformal QCD.

Keywords

Supersymmetric gauge theory AdS-CFT Correspondence 1/N Expansion 

References

  1. [1]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    I.R. Klebanov and J.M. Maldacena, Superconformal gauge theories and non-critical superstrings, Int. J. Mod. Phys. A 19 (2004) 5003 [hep-th/0409133] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    A. Fotopoulos, V. Niarchos and N. Prezas, D-branes and SQCD in non-critical superstring theory, JHEP 10 (2005) 081 [hep-th/0504010] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S.K. Ashok, S. Murthy and J. Troost, D-branes in non-critical superstrings and minimal super Yang-Mills in various dimensions, Nucl. Phys. B 749 (2006) 172 [hep-th/0504079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Murthy and J. Troost, D-branes in non-critical superstrings and duality in N = 1 gauge theories with flavor, JHEP 10 (2006) 019 [hep-th/0606203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C. Romelsberger, Calculating the superconformal index and Seiberg duality, arXiv:0707.3702 [INSPIRE].
  9. [9]
    F. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys. B 682 (2004) 487 [hep-th/0310252] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B.I. Zwiebel, N = 4 SYM to two loops: Compact expressions for the non-compact symmetry algebra of the su(1, 1|2) sector, JHEP 02 (2006) 055 [hep-th/0511109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    C. Sieg, Superspace computation of the three-loop dilatation operator of N = 4 SYM theory, Phys. Rev. D 84 (2011) 045014 [arXiv:1008.3351] [INSPIRE].ADSGoogle Scholar
  16. [16]
    B.I. Zwiebel, From scattering amplitudes to the dilatation generator in N = 4 SYM, J. Phys. A 45 (2012) 115401 [arXiv:1111.0083] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe Ansatze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].MathSciNetGoogle Scholar
  21. [21]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar N =4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Belitsky, G. Korchemsky and D. Mueller, Integrability in Yang-Mills theory on the light cone beyond leading order, Phys. Rev. Lett. 94 (2005) 151603 [hep-th/0412054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A. Belitsky, G. Korchemsky and D. Mueller, Integrability of two-loop dilatation operator in gauge theories, Nucl. Phys. B 735 (2006) 17 [hep-th/0509121] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Belitsky, G. Korchemsky and D. Mueller, Towards Baxter equation in supersymmetric Yang-Mills theories, Nucl. Phys. B 768 (2007) 116 [hep-th/0605291] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Korchemsky, Review of AdS/CFT integrability, Chapter IV.4: Integrability in QCD and N <4 SYM,Lett. Math. Phys. 99 (2012) 425 [arXiv:1012.4000][INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    G. Veneziano, Some aspects of a unified approach to gauge, dual and Gribov theories, Nucl. Phys. B 117 (1976) 519 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Poland and D. Simmons-Duffin, N = 1 SQCD and the transverse field Ising model, JHEP 02 (2012) 009 [arXiv:1104.1425] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Beisert, The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2005) 1 [hep-th/0407277] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    P. Liendo, E. Pomoni and L. Rastelli, The complete one-loop dilation operator of N = 2 superconformal QCD, JHEP 07 (2012) 003 [arXiv:1105.3972] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    A. Gadde, E. Pomoni and L. Rastelli, The Veneziano limit of N = 2 superconformal QCD: towards the string dual of N = 2 SU(N (c)) SYM with N (f ) = 2N (c), arXiv:0912.4918 [INSPIRE].
  34. [34]
    A. Gadde, E. Pomoni and L. Rastelli, Spin chains in N = 2 superconformal theories: from the Z 2 quiver to superconformal QCD, JHEP 06 (2012) 107 [arXiv:1006.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Gadde and L. Rastelli, Twisted magnons, JHEP 04 (2012) 053 [arXiv:1012.2097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Beisert and R. Roiban, The Bethe ansatz for Z(S) orbifolds of N = 4 super Yang-Mills theory, JHEP 11 (2005) 037 [hep-th/0510209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    E. Pomoni and C. Sieg, From N = 4 gauge theory to N = 2 conformal QCD: three-loop mixing of scalar composite operators, arXiv:1105.3487 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A

Personalised recommendations