Advertisement

Journal of High Energy Physics

, 2012:105 | Cite as

Structure in 6D and 4D \( \mathcal{N}=1 \) supergravity theories from F-theory

  • Thomas W. Grimm
  • Washington Taylor
Article

Abstract

We explore some aspects of 4D supergravity theories and F-theory vacua that are parallel to structures in the space of 6D theories. The spectrum and topological terms in 4D supergravity theories correspond to topological data of F-theory geometry, just as in six dimensions. In particular, topological axion-curvature squared couplings appear in 4D theories; these couplings are characterized by vectors in the dual to the lattice of axion shift symmetries associated with string charges. These terms are analogous to the Green-Schwarz terms of 6D supergravity theories, though in 4D the terms are not generally linked with anomalies. We outline the correspondence between F-theory topology and data of the corresponding 4D supergravity theories. The correspondence of geometry with structure in the low-energy action illuminates topological aspects of heterotic-F-theory duality in 4D as well as in 6D. The existence of an F-theory realization also places geometrical constraints on the 4D supergravity theory in the large-volume limit.

Keywords

F-Theory D-branes Supergravity Models String Duality 

References

  1. [1]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    W. Taylor, TASI Lectures on Supergravity and String Vacua in Various Dimensions, arXiv:1104.2051 [INSPIRE].
  5. [5]
    V. Sadov, Generalized Green-Schwarz mechanism in F-theory, Phys. Lett. B 388 (1996) 45 [hep-th/9606008] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D N = 1 supergravities to F-theory, JHEP 02 (2010) 099 [arXiv:0911.3393] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    F. Bonetti and T.W. Grimm, Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds, JHEP 05 (2012) 019 [arXiv:1112.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Grassi and D.R. Morrison, Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds, math/0005196 [INSPIRE].
  10. [10]
    N. Seiberg and W. Taylor, Charge Lattices and Consistency of 6D Supergravity, JHEP 06 (2011) 001 [arXiv:1103.0019] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, arXiv:1109.0042 [INSPIRE].
  12. [12]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V. Kumar and W. Taylor, A Bound on 6D N = 1 supergravities, JHEP 12 (2009) 050 [arXiv:0910.1586] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    V. Kumar, D.S. Park and W. Taylor, 6D supergravity without tensor multiplets, JHEP 04 (2011) 080 [arXiv:1011.0726] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D.R. Morrison and W. Taylor, Matter and singularities, JHEP 01 (2012) 022 [arXiv:1106.3563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    V. Braun, Toric Elliptic Fibrations and F-theory Compactifications, arXiv:1110.4883 [INSPIRE].
  17. [17]
    D.R. Morrison, W. Taylor and W. Taylor, Classifying bases for 6D F-theory models, arXiv:1201.1943 [INSPIRE].
  18. [18]
    D.R. Morrison, W. Taylor and W. Taylor, Toric bases for 6D F-theory models, arXiv:1204.0283 [INSPIRE].
  19. [19]
    J.J. Heckman, Particle Physics Implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory Compactifications for Supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, Fluxes and Compact Three-Generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    T.W. Grimm, S. Krause and T. Weigand, F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Cvetič, I. Garcia-Etxebarria and J. Halverson, Global F-theory Models: Instantons and Gauge Dynamics, JHEP 01 (2011) 073 [arXiv:1003.5337] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.-M. Chen, J. Knapp, M. Kreuzer and C. Mayrhofer, Global SO(10) F-theory GUTs, JHEP 10 (2010) 057 [arXiv:1005.5735] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    J. Knapp, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, Toric Construction of Global F-theory GUTs, JHEP 03 (2011) 138 [arXiv:1101.4908] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  29. [29]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [INSPIRE].
  31. [31]
    T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Computing Brane and Flux Superpotentials in F-theory Compactifications, JHEP 04 (2010) 015 [arXiv:0909.2025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    H. Jockers, P. Mayr and J. Walcher, On N = 1 4d Effective Couplings for F-theory and Heterotic Vacua, Adv. Theor. Math. Phys. 14 (2010) 1433 [arXiv:0912.3265] [INSPIRE].MathSciNetGoogle Scholar
  33. [33]
    A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and Spectral Covers from Resolved Calabi-Yaus, JHEP 11 (2011) 098 [arXiv:1108.1794] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    T.W. Grimm and H. Hayashi, F-theory fluxes, Chirality and Chern-Simons theories, JHEP 03 (2012) 027 [arXiv:1111.1232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    S. Krause, C. Mayrhofer and T. Weigand, Gauge Fluxes in F-theory and Type IIB Orientifolds, JHEP 08 (2012) 119 [arXiv:1202.3138] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Intriligator, H. Jockers, P. Mayr, D.R. Morrison and M.R. Plesser, Conifold Transitions in M-theory on Calabi-Yau Fourfolds with Background Fluxes, arXiv:1203.6662 [INSPIRE].
  39. [39]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M. Duff, B. Nilsson and C. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    G. Papadopoulos and P. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    B.S. Acharya and E. Witten, Chiral fermions from manifolds of G 2 holonomy, hep-th/0109152 [INSPIRE].
  43. [43]
    K. Narain, M. Sarmadi and C. Vafa, Asymmetric Orbifolds, Nucl. Phys. B 288 (1987) 551 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    C. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    B. Wecht, Lectures on Nongeometric Flux Compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  50. [50]
    C. Condeescu, I. Florakis and D. Lüst, Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T.W. Grimm, The N = 1 effective action of F-theory compactifications, Nucl. Phys. B 845 (2011) 48 [arXiv:1008.4133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E. Plauschinn, The Generalized Green-Schwarz Mechanism for Type IIB Orientifolds with D3- and D7-branes, JHEP 05 (2009) 062 [arXiv:0811.2804] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, Massive Abelian Gauge Symmetries and Fluxes in F-theory, JHEP 12 (2011) 004 [arXiv:1107.3842] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    T.W. Grimm and R. Savelli, Gravitational Instantons and Fluxes from M/F-theory on Calabi-Yau fourfolds, Phys. Rev. D 85 (2012) 026003 [arXiv:1109.3191] [INSPIRE].ADSGoogle Scholar
  57. [57]
    T.W. Grimm, D. Klevers and M. Poretschkin, Fluxes and Warping for Gauge Couplings in F-theory, arXiv:1202.0285 [INSPIRE].
  58. [58]
    L.E. Ibáñez and A. Uranga, D = 6, N = 1 string vacua and duality, in APCTP Winter School Dualities in Gauge and String Theories, Sorak Mountain Resort, Korea, 17-28 February 1997 [hep-th/9707075] [INSPIRE].
  59. [59]
    H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly Free Chiral Theories in Six-Dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    L. Romans, Selfduality for interacting fields: covariant field equations for six-dimensional chiral supergravities, Nucl. Phys. B 276 (1986) 71 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nucl. Phys. B 519 (1998) 115 [hep-th/9711059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    F. Riccioni, All couplings of minimal six-dimensional supergravity, Nucl. Phys. B 605 (2001) 245 [hep-th/0101074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    J. Erler, Anomaly cancellation in six-dimensions, J. Math. Phys. 35 (1994) 1819 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  69. [69]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tates algorithm and F-theory, JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    S.H. Katz, D.R. Morrison and M.R. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    P. Candelas, D.-E. Diaconescu, B. Florea, D.R. Morrison and G. Rajesh, Codimension three bundle singularities in F-theory, JHEP 06 (2002) 014 [hep-th/0009228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric Completion of an R 2 term in Five-dimensional Supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  76. [76]
    G. Honecker, Massive U(1)s and heterotic five-branes on K3, Nucl. Phys. B 748 (2006) 126 [hep-th/0602101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    M.R. Douglas, Branes within branes, hep-th/9512077 [INSPIRE].
  80. [80]
    J.F. Morales, C.A. Scrucca and M. Serone, Anomalous couplings for D-branes and O-planes, Nucl. Phys. B 552 (1999) 291 [hep-th/9812071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    B. Stefanski Jr., Gravitational couplings of D-branes and O-planes, Nucl. Phys. B 548 (1999) 275 [hep-th/9812088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) 7345 [hep-th/9702165] [INSPIRE].ADSGoogle Scholar
  84. [84]
    S. Weinberg, The quantum theory of fields, volume III: supersymmetry, Cambridge University Press, Cambridge, U.K. (2000).Google Scholar
  85. [85]
    J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, New Jersey, U.S.A. (1992).Google Scholar
  86. [86]
    T.W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  87. [87]
    H. Jockers and J. Louis, The Effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    M. Haack and J. Louis, Duality in heterotic vacua with four supercharges, Nucl. Phys. B 575 (2000) 107 [hep-th/9912181] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  89. [89]
    M. Haack and J. Louis, M theory compactified on Calabi-Yau fourfolds with background flux, Phys. Lett. B 507 (2001) 296 [hep-th/0103068] [INSPIRE].MathSciNetADSGoogle Scholar
  90. [90]
    K. Hori et al., Mirror symmetry, Clay mathematics monographs 1, Oxford University Press, Oxford, U.K. (2003).Google Scholar
  91. [91]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  92. [92]
    E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  93. [93]
    A. Collinucci and R. Savelli, On Flux Quantization in F-theory, JHEP 02 (2012) 015 [arXiv:1011.6388] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    A. Collinucci and R. Savelli, On Flux Quantization in F-theory II: Unitary and Symplectic Gauge Groups, JHEP 08 (2012) 094 [arXiv:1203.4542] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [INSPIRE].
  96. [96]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  97. [97]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  98. [98]
    S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  99. [99]
    A. Klemm, B. Lian, S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys. B 518 (1998) 515 [hep-th/9701023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  100. [100]
    A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  101. [101]
    S. Cecotti, S. Ferrara and M. Villasante, Linear Multiplets and Super Chern-Simons Forms in 4D Supergravity, Int. J. Mod. Phys. A 2 (1987) 1839 [INSPIRE].MathSciNetADSGoogle Scholar
  102. [102]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: A Geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  103. [103]
    C.T.C. Wall, Classification Problems in Differential Topology, V: On certain 6-manifolds, Invent. Math. 1 (1966) 355.ADSCrossRefGoogle Scholar
  104. [104]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  105. [105]
    M. Bershadsky, A. Johansen, T. Pantev and V. Sadov, On four-dimensional compactifications of F-theory, Nucl. Phys. B 505 (1997) 165 [hep-th/9701165] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  106. [106]
    G. Curio and R.Y. Donagi, Moduli in N = 1 heterotic/F theory duality, Nucl. Phys. B 518 (1998) 603 [hep-th/9801057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    B. Andreas, N=1 heterotic/F theory duality, Fortsch. Phys. 47 (1999) 587 [hep-th/9808159] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  108. [108]
    P. Berglund and P. Mayr, Heterotic string/F theory duality from mirror symmetry, Adv. Theor. Math. Phys. 2 (1999) 1307 [hep-th/9811217] [INSPIRE].MathSciNetGoogle Scholar
  109. [109]
    B. Andreas and G. Curio, On discrete twist and four flux in N = 1 heterotic/F theory compactifications, Adv. Theor. Math. Phys. 3 (1999) 1325 [hep-th/9908193] [INSPIRE].MathSciNetMATHGoogle Scholar
  110. [110]
    G. Horrocks and D. Mumford, A rank 2 vector bundle on P 4 with 15000 symmetries, Topology 12 (1973) 63.MathSciNetCrossRefMATHGoogle Scholar
  111. [111]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  112. [112]
    P.S. Aspinwall, S.H. Katz and D.R. Morrison, Lie groups, Calabi-Yau threefolds and F-theory, Adv. Theor. Math. Phys. 4 (2000) 95 [hep-th/0002012] [INSPIRE].MathSciNetMATHGoogle Scholar
  113. [113]
    D.S. Park, Anomaly Equations and Intersection Theory, JHEP 01 (2012) 093 [arXiv:1111.2351] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, Inc. (1978).Google Scholar
  115. [115]
    A. Grassi, On minimal models of elliptic threefolds, Math. Ann. 290 (1991) 287.MathSciNetCrossRefMATHGoogle Scholar
  116. [116]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  117. [117]
    V. Kumar and W. Taylor, String Universality in Six Dimensions, Adv. Theor. Math. Phys. 15 (2011) 325 [arXiv:0906.0987] [INSPIRE].MathSciNetMATHGoogle Scholar
  118. [118]
    S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, P-brane dyons and electric magnetic duality, Nucl. Phys. B 520 (1998) 179 [hep-th/9712189] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  119. [119]
    D.A. Cox, The Homogeneous coordinate ring of a toric variety, revised version, J. Algebraic Geom. 4 (1995) 17 [alg-geom/9210008] [INSPIRE].MathSciNetMATHGoogle Scholar
  120. [120]
    A. Grassi, Divisors on elliptic Calabi-Yau four folds and the superpotential in F-theory. 1., J. Geom. Phys. 28 (1998) 289 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  121. [121]
    K. Mohri, F theory vacua in four-dimensions and toric threefolds, Int. J. Mod. Phys. A 14 (1999) 845 [hep-th/9701147] [INSPIRE].MathSciNetADSGoogle Scholar
  122. [122]
    K. Matsuki, Introduction to the Mori Program, Springer-Verlag, Berlin (2002).CrossRefMATHGoogle Scholar
  123. [123]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  126. [126]
    J. Distler and S. Kachru, Duality of (0,2) string vacua, Nucl. Phys. B 442 (1995) 64 [hep-th/9501111] [INSPIRE].MathSciNetADSGoogle Scholar
  127. [127]
    R. Blumenhagen and T. Rahn, Landscape Study of Target Space Duality of (0,2) Heterotic String Models, JHEP 09 (2011) 098 [arXiv:1106.4998] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Max Planck Institute for PhysicsMunichGermany
  2. 2.Center for Theoretical Physics, Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations