Advertisement

Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma

  • Kiminad A. Mamo
Article

Abstract

We study holographic RG flow of the shear viscosity tensor of anisotropic, strongly coupled \( \mathcal{N}=4 \) super-Yang-Mills plasma by using its type IIB supergravity dual in anisotropic bulk spacetime. We find that the shear viscosity tensor has three independent components in the anisotropic bulk spacetime away from the boundary, and one of the components has a non-trivial RG flow while the other two have a trivial one. For the component of the shear viscosity tensor with non-trivial RG flow, we derive its RG flow equation, and solve the equation analytically to second order in the anisotropy parameter a. We derive the RG equation using the equation of motion, holographic Wilsonian RG method, and Kubo’s formula. All methods give the same result. Solving the equation, we find that the ratio of the component of the shear viscosity tensor to entropy density \( \frac{\eta }{s} \) flows from above \( \frac{1}{{4\pi }} \) the horizon (IR) to below \( \frac{1}{{4\pi }} \) the boundary (UV) where it violates the holographic shear viscosity (Kovtun-Son-Starinets) bound and where it agrees with the other longitudinal component.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and quark-gluon plasmas 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
  5. [5]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  7. [7]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    C.P. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].ADSGoogle Scholar
  13. [13]
    PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Romatschke and U. Romatschke, Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301 [arXiv:0706.1522] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301 [arXiv:1011.2783] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris VI, France (1979).Google Scholar
  18. [18]
    G. Policastro, D. Son and A. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Kovtun, G.D. Moore and P. Romatschke, The stickiness of sound: an absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics, Phys. Rev. D 84 (2011) 025006 [arXiv:1104.1586] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. Cremonini and P. Szepietowski, Generating temperature flow for η s with higher derivatives: from Lifshitz to AdS, JHEP 02 (2012) 038 [arXiv:1111.5623] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Buchel and S. Cremonini, Viscosity bound and causality in superfluid plasma, JHEP 10 (2010) 026 [arXiv:1007.2963] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Cremonini, The shear viscosity to entropy ratio: a status report, Mod. Phys. Lett. B 25 (2011) 1867 [arXiv:1108.0677] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped holographic superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Natsuume and M. Ohta, The shear viscosity of holographic superfluids, Prog. Theor. Phys. 124 (2010) 931 [arXiv:1008.4142] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  29. [29]
    P. Basu and J.-H. Oh, Analytic approaches to anisotropic holographic superfluids, JHEP 07 (2012) 106 [arXiv:1109.4592] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, Phys. Lett. B 699 (2011) 301 [arXiv:1011.5912] [INSPIRE].ADSGoogle Scholar
  31. [31]
    W. Florkowski, Anisotropic fluid dynamics in the early stage of relativistic heavy-ion collisions, Phys. Lett. B 668 (2008) 32 [arXiv:0806.2268] [INSPIRE].ADSGoogle Scholar
  32. [32]
    W. Florkowski and R. Ryblewski, Dynamics of anisotropic plasma at the early stages of relativistic heavy-ion collisions, Acta Phys. Polon. B 40 (2009) 2843 [arXiv:0901.4653] [INSPIRE].ADSGoogle Scholar
  33. [33]
    T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    I. Heemskerk and J. Polchinski, Holographic and wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S. Grozdanov, Wilsonian renormalisation and the exact cut-off scale from holographic duality, JHEP 06 (2012) 079 [arXiv:1112.3356] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, hep-th/0202055 [INSPIRE].
  40. [40]
    E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    S.-J. Sin and Y. Zhou, Holographic wilsonian RG flow and sliding membrane paradigm, JHEP 05 (2011) 030 [arXiv:1102.4477] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Y. Matsuo, S.-J. Sin and Y. Zhou, Mixed RG flows and hydrodynamics at finite holographic screen, JHEP 01 (2012) 130 [arXiv:1109.2698] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Jain, Universal thermal and electrical conductivity from holography, JHEP 11 (2010) 092 [arXiv:1008.2944] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.K. Chakrabarti, S. Chakrabortty and S. Jain, Proof of universality of electrical conductivity at finite chemical potential, JHEP 02 (2011) 073 [arXiv:1011.3499] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.-H. Oh, Running shear viscosities in an-isotropic holographic superfluids, JHEP 06 (2012) 103 [arXiv:1201.5605] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S.M. Carroll, G.B. Field and R. Jackiw, Limits on a Lorentz and parity violating modification of electrodynamics, Phys. Rev. D 41 (1990) 1231 [INSPIRE].ADSGoogle Scholar
  47. [47]
    K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma, JHEP 07 (2007) 088 [arXiv:0706.0411] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IllinoisChicagoU.S.A.

Personalised recommendations