Deconfinement transitions of large N QCD with chemical potential at weak and strong coupling

  • Timothy J. Hollowood
  • Joyce C. Myers


We calculate the deconfinement line of transitions for large N c QCD at finite temperature and chemical potential in two different regimes: weak coupling in the continuum, and, strong coupling on the lattice, working in the limit where N f is of order N c . In the first regime we extend previous weak-coupling results from one-loop perturbation theory on S 1 × S 3 to higher temperatures, where the theory reduces to a matrix model, analogous to that of Gross, Witten, and Wadia. We obtain the line of transitions that extends from the temperature-axis, where to a first approximation the transition is higher than fourth order, to the chemical potential-axis, where the transition is third order. In the second regime we use the same matrix model to obtain the deconfinement line of transitions as a function of the coupling strength and μ/T to leading order in a strong coupling expansion of lattice QCD with heavy quarks, extending previous U(N c ) results to SU(N c ). We show that in the case of zero chemical potential the result obtained for the Polyakov line from QCD on S 1 × S 3 at weak coupling reproduces the known results from the lattice strong coupling expansion, under a simple change of parameters, which is valid for sufficiently low temperatures and chemical potentials.


1/N Expansion Phase Diagram of QCD 


  1. [1]
    S. Hands, T.J. Hollowood and J.C. Myers, QCD with chemical potential in a small hyperspherical box, JHEP 07 (2010) 086 [arXiv:1003.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn/deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetMATHGoogle Scholar
  3. [3]
    D. Gross and E. Witten, Possible third order phase transition in the large-N lattice gauge theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Wadia, A study of U(n) lattice gauge theory in two-dimensions, EFI-79/44-CHICAGO, University of Chicago, Chicago U.S.A. (1979) [INSPIRE].Google Scholar
  5. [5]
    P. Damgaard and A. Patkos, Analytic results for the effective theory of thermal Polyakov loops, Phys. Lett. B 172 (1986) 369 [INSPIRE].ADSGoogle Scholar
  6. [6]
    P.H. Damgaard and H. Huffel, Stochastic quantization, Phys. Rept. 152 (1987) 227 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Complex Langevin dynamics: criteria for correctness, PoS(LATTICE 2011)197 [arXiv:1110.5749] [INSPIRE].
  8. [8]
    J. Greensite and K. Splittorff, Mean field theory of effective spin models as a baryon fugacity expansion, arXiv:1206.1159 [INSPIRE].
  9. [9]
    C.H. Christensen, Exact large-N c solution of an effective theory for Polyakov loops at finite chemical potential, Phys. Lett. B 714 (2012) 306 [arXiv:1204.2466] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Billó, M. Caselle, A. D’Adda, L. Magnea and S. Panzeri, Deconfinement transition in large-N lattice gauge theory, Nucl. Phys. B 435 (1995) 172 [hep-lat/9407019] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Dumitru, R.D. Pisarski and D. Zschiesche, Dense quarks and the fermion sign problem, in a SU(N) matrix model, Phys. Rev. D 72 (2005) 065008 [hep-ph/0505256] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Dijkgraaf and C. Vafa, Matrix models, topological strings and supersymmetric gauge theories, Nucl. Phys. B 644 (2002) 3 [hep-th/0206255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J. Jurkiewicz and K. Zalewski, Vacuum structure of the U(n → ∞) gauge theory on a two-dimensional lattice for a broad class of variant actions, Nucl. Phys. B 220 (1983) 167 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Mykkanen, M. Panero and K. Rummukainen, Casimir scaling and renormalization of Polyakov loops in large-N gauge theories, JHEP 05 (2012) 069 [arXiv:1202.2762] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H.J. Schnitzer, Confinement/deconfinement transition of large-N gauge theories with N f fundamentals: N f /N finite, Nucl. Phys. B 695 (2004) 267 [hep-th/0402219] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    P. Basu and A. Mukherjee, Dissolved deconfinement: phase structure of large-N gauge theories with fundamental matter, Phys. Rev. D 78 (2008) 045012 [arXiv:0803.1880] [INSPIRE].ADSGoogle Scholar
  17. [17]
    N.I. Muskhelishvili, Singular integral equations, Dover, New York U.S.A. (2008).Google Scholar
  18. [18]
    Z. Fodor and S. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534 (2002) 87 [hep-lat/0104001] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].ADSGoogle Scholar
  20. [20]
    V. Azcoiti, G. Di Carlo, A. Galante and V. Laliena, Phase diagram of QCD with four quark flavors at finite temperature and baryon density, Nucl. Phys. B 723 (2005) 77 [hep-lat/0503010] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Kratochvila and P. de Forcrand, The canonical approach to finite density QCD, PoS(LAT2005)167 [hep-lat/0509143] [INSPIRE].
  22. [22]
    P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 [arXiv:1005.0539] [INSPIRE].
  23. [23]
    J. Langelage and O. Philipsen, The pressure of strong coupling lattice QCD with heavy quarks, the hadron resonance gas model and the large-N limit, JHEP 04 (2010) 055 [arXiv:1002.1507] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Fromm, J. Langelage, S. Lottini and O. Philipsen, The QCD deconfinement transition for heavy quarks and all baryon chemical potentials, JHEP 01 (2012) 042 [arXiv:1111.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T.J. Hollowood and J.C. Myers, Finite volume phases of large-N gauge theories with massive adjoint fermions, JHEP 11 (2009) 008 [arXiv:0907.3665] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Cossu and M. D’Elia, Finite size phase transitions in QCD with adjoint fermions, JHEP 07 (2009) 048 [arXiv:0904.1353] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Gavai and S. Gupta, The critical end point of QCD, Phys. Rev. D 71 (2005) 114014 [hep-lat/0412035] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Gupta, Finding the critical end point of QCD: lattice and experiment, PoS(CPOD 2009)025 [arXiv:0909.4630] [INSPIRE].
  29. [29]
    P. de Forcrand, S. Kim and O. Philipsen, A QCD chiral critical point at small chemical potential: is it there or not?, PoS(LATTICE 2007)178 [arXiv:0711.0262] [INSPIRE].
  30. [30]
    S. Kim, P. de Forcrand, S. Kratochvila and T. Takaishi, The 3-state Potts model as a heavy quark finite density laboratory, PoS(LAT2005)166 [hep-lat/0510069] [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsSwansea UniversitySwanseaU.K.
  2. 2.University of Groningen, Centre for Theoretical PhysicsGroningenThe Netherlands

Personalised recommendations