Advertisement

Higher spin gravity with matter in AdS 3 and its CFT dual

  • Chi-Ming Chang
  • Xi Yin
Article

Abstract

We study Vasiliev’s system of higher spin gauge fields coupled to massive scalars in AdS 3, and compute the tree level two and three point functions. These are compared to the large N limit of the W N minimal model, and nontrivial agreements are found. We propose a modified version of the conjecture of Gaberdiel and Gopakumar, under which the bulk theory is perturbatively dual to a subsector of the CFT that closes on the sphere.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetMATHGoogle Scholar
  5. [5]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1 - D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, \( \mathbb{R} \)) WZW model 1.: The Spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  9. [9]
    S. Giombi, S. Minwalla, S. Prakash, S. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].
  13. [13]
    M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Ahn, The large-Nt Hooft Limit of Coset Minimal Models, JHEP 10 (2011) 125 [arXiv:1106.0351] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    M. Henneaux and S.-J. Rey, Nonlinear W infinity as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    E. Kiritsis and V. Niarchos, Large-N limits of 2d CFTs, Quivers and AdS 3 duals, JHEP 04 (2011) 113 [arXiv:1011.5900] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Castro, A. Lepage-Jutier and A. Maloney, Higher spin theories in AdS 3 and a gravitational exclusion principle, JHEP 01 (2011) 142 [arXiv:1012.0598] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    E. Sezgin and P. Sundell, Analysis of higher spin field equations in four-dimensions, JHEP 07 (2002) 055 [hep-th/0205132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A.C. Petkou, Evaluating the AdS dual of the critical O(N) vector model, JHEP 03 (2003) 049 [hep-th/0302063] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  29. [29]
    S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 construction from collective fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].ADSGoogle Scholar
  34. [34]
    K. Lang and W. Rühl, Anomalous dimensions of tensor fields of arbitrary rank for critical nonlinear O(N) σ-models at 2 < d < 4 to first order in 1/N, Z. Phys. C 51 (1991) 127 [INSPIRE].Google Scholar
  35. [35]
    K. Lang and W. Rühl, Field algebra for critical O(N) vector nonlinear σ-models at 2 < d < 4, Z. Phys. C 50 (1991) 285 [INSPIRE].Google Scholar
  36. [36]
    K. Lang and W. Rühl, The critical O(N) σ-model at dimension 2 < d < 4 and order 1/N 2 : operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Lang and W. Rühl, The scalar ancestor of the energy momentum field in critical σ-models at 2 < d < 4, Phys. Lett. B 275 (1992) 93 [INSPIRE].ADSGoogle Scholar
  38. [38]
    K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: Fusion coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Extensions of the Virasoro Algebra Constructed from Kac-Moody Algebras Using Higher Order Casimir Invariants, Nucl. Phys. B 304 (1988) 348 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S. Giombi and X. Yin, On higher spin gauge theory and the critical O(N) model, Phys. Rev. D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys. 15 (2011) 1141 [arXiv:1012.5999] [INSPIRE].MathSciNetMATHGoogle Scholar
  43. [43]
    R. Metsaev, CFT adapted gauge invariant formulation of massive arbitrary spin fields in AdS, Phys. Lett. B 682 (2010) 455 [arXiv:0907.2207] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    F. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Coset construction for extended Virasoro algebras, Nucl. Phys. B 304 (1988) 371 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations