Advertisement

Light gravitino production in association with gluinos at the LHC

  • P. de Aquino
  • F. Maltoni
  • K. Mawatari
  • B. Oexl
Article

Abstract

We study the jets plus missing energy signature at the LHC in a scenario where the gravitino is very light and the gluino is the next-to-lightest supersymmetric particle and promptly decays into a gluon and a gravitino. We consider both associated gravitino production with a gluino and gluino pair production. By merging matrix elements with parton showers, we generate inclusive signal and background samples and show how information on the gluino and gravitino masses can be obtained by simple final state observables.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    D.E. Morrissey, T. Plehn and T.M. Tait, Physics searches at the LHC, Phys. Rept. 515 (2012) 1 [arXiv:0912.3259] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D0 collaboration, S. Abachi et al., Search for squarks and gluinos in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 75 (1995) 618 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    CDF collaboration, T. Affolder et al., Search for gluinos and scalar quarks in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV using the missing energy plus multijets signature, Phys. Rev. Lett. 88 (2002) 041801 [hep-ex/0106001] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D0 collaboration, V. Abazov et al., Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb −1 of \( p\overline{p} \) collision data at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 660 (2008) 449 [arXiv:0712.3805] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CDF collaboration, T. Aaltonen et al., Inclusive search for squark and gluino production in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 121801 [arXiv:0811.2512] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSGoogle Scholar
  8. [8]
    CDF collaboration, T. Aaltonen et al., Search for supersymmetry with gauge-mediated breaking in diphoton events with missing transverse energy at CDF II, Phys. Rev. Lett. 104 (2010) 011801 [arXiv:0910.3606] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D0 collaboration, V.M. Abazov et al., Search for diphoton events with large missing transverse energy in 6.3 fb −1 of \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 105 (2010) 221802 [arXiv:1008.2133] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse momentum in 1 fb −1 of 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 710 (2012) 519 [arXiv:1111.4116] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt{s}=7 \) TeV in events with two photons and missing transverse energy, Phys. Rev. Lett.106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett. 38 (1977) 1433 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Cremmer et al., SuperHiggs effect in supergravity with general scalar interactions, Phys. Lett. B 79 (1978) 231 [INSPIRE].ADSGoogle Scholar
  14. [14]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Coupling supersymmetric Yang-Mills theories to supergravity, Phys. Lett. B 116 (1982) 231 [INSPIRE].ADSGoogle Scholar
  15. [15]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Dicus, S. Nandi and J. Woodside, Collider signals of a superlight gravitino, Phys. Rev. D 41 (1990) 2347 [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Drees and J. Woodside, Signals for a superlight gravitino at the LHC, IS-J-4137 (1990).Google Scholar
  18. [18]
    D.A. Dicus and S. Nandi, New collider bound on light gravitino mass, Phys. Rev. D 56 (1997) 4166 [hep-ph/9611312] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Kim, J.L. Lopez, D.V. Nanopoulos, R. Rangarajan and A. Zichichi, Light gravitino production at hadron colliders, Phys. Rev. D 57 (1998) 373 [hep-ph/9707331] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Brignole, F. Feruglio, M.L. Mangano and F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy, Nucl. Phys. B 526 (1998) 136 [Erratum ibid. B 582 (2000) 759-761] [hep-ph/9801329] [INSPIRE].
  21. [21]
    M. Klasen and G. Pignol, New results for light gravitinos at hadron colliders: Tevatron limits and LHC perspectives, Phys. Rev. D 75 (2007) 115003 [hep-ph/0610160] [INSPIRE].ADSGoogle Scholar
  22. [22]
    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-independent jets plus missing energy searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Plehn and T.M. Tait, Seeking Sgluons, J. Phys. G 36 (2009) 075001 [arXiv:0810.3919] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Searching for directly decaying gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34 [arXiv:0803.0019] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P. de Aquino, K. Hagiwara, Q. Li and F. Maltoni, Simulating graviton production at hadron colliders, JHEP 06 (2011) 132 [arXiv:1101.5499] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B.C. Allanach, S. Grab and H.E. Haber, Supersymmetric monojets at the Large Hadron Collider, JHEP 01 (2011) 138 [Erratum ibid. 1107 (2011) 087] [arXiv:1010.4261] [INSPIRE].
  33. [33]
    T. Bhattacharya and P. Roy, Role of chiral scalar and pseudoscalar in two photon production of a superlight gravitino, Phys. Rev. D 38 (1988) 2284 [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Gherghetta, Goldstino decoupling in spontaneously broken supergravity theories, Nucl. Phys. B 485 (1997) 25 [hep-ph/9607448] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Mawatari, B. Oexl and Y. Takaesu, Associated production of light gravitinos in e + e and e γ collisions, Eur. Phys. J. C 71 (2011) 1783 [arXiv:1106.5592] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].ADSGoogle Scholar
  37. [37]
    CDF collaboration, D. Acosta et al., Limits on extra dimensions and new particle production in the exclusive photon and missing energy signature in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 89 (2002) 281801 [hep-ex/0205057] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    CDF collaboration, T. Affolder et al., Limits on gravitino production and new processes with large missing transverse energy in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 85 (2000) 1378 [hep-ex/0003026] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline{b} \) + n jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSGoogle Scholar
  49. [49]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun. 182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  51. [51]
    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    K. Hagiwara, K. Mawatari and Y. Takaesu, HELAS and MadGraph with spin-3/2 particles, Eur. Phys. J. C 71 (2011) 1529 [arXiv:1010.4255] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K. Mawatari and Y. Takaesu, HELAS and MadGraph with goldstinos, Eur. Phys. J. C 71 (2011) 1640 [arXiv:1101.1289] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • P. de Aquino
    • 1
    • 2
  • F. Maltoni
    • 2
  • K. Mawatari
    • 3
  • B. Oexl
    • 3
  1. 1.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium

Personalised recommendations