Advertisement

Journal of High Energy Physics

, 2011:144 | Cite as

Counting supersymmetric branes

  • Axel Kleinschmidt
Article

Abstract

Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with xxxx. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E 11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for σ ≤ 3 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.

Keywords

p-branes String Duality Extended Supersymmetry M-Theory 

References

  1. [1]
    B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [inSPIRE].ADSMATHCrossRefGoogle Scholar
  2. [2]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [inSPIRE].CrossRefGoogle Scholar
  3. [3]
    B. de Wit and H. Samtleben, The End of the p-form hierarchy, JHEP 08 (2008) 015 [arXiv:0805.4767] [inSPIRE].CrossRefGoogle Scholar
  4. [4]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [inSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Kleinschmidt, I. Schnakenburg and P.C. West, Very extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [inSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    E. Bergshoeff, J. Hartong, P. Howe, T. Ortín and F. Riccioni, IIA/IIB Supergravity and Ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [inSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [inSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E.A. Bergshoeff and F. Riccioni, D-Brane Wess-Zumino Terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [inSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [inSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [inSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, \( {\text{SL}}\left( {2,\mathbb{R}} \right) \) -invariant IIB Brane Actions, JHEP 02 (2007) 007 [hep-th/0611036] [inSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E.A. Bergshoeff, J. Hartong,T.Ortín and D. Roest, Seven-branes and Supersymmetry, JHEP 02 (2007) 003 [hep-th/0612072] [inSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Izquierdo, N. Lambert, G. Papadopoulos and P. Townsend, Dyonic membranes, Nucl. Phys. B 460 (1996) 560 [hep-th/9508177] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    F. Englert and L. Houart, G+++ invariant formulation of gravity and M theories: Exact BPS solutions, JHEP 01 (2004) 002 [hep-th/0311255] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    F. Englert and L. Houart, G+++ invariant formulation of gravity and M-theories: Exact intersecting brane solutions, JHEP 05 (2004) 059 [hep-th/0405082] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    P.P. Cook, Exotic E 11 branes as composite gravitational solutions, Class. Quant. Grav. 26 (2009) 235023 [arXiv:0908.0485] [inSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L. Houart, A. Kleinschmidt and J.L. Hörnlund, Some Algebraic Aspects of Half-BPS Bound States in M-theory, JHEP 03 (2010) 022 [arXiv:0911.5141] [inSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Houart, A. Kleinschmidt and J. Lindman Hörnlund, An M-theory solution from null roots in E 11, JHEP 01 (2011) 154 [arXiv:1101.2816] [inSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Brown, O.J. Ganor and C. Helfgott, M theory and E 10 : Billiards, branes and imaginary roots, JHEP 08 (2004) 063 [hep-th/0401053] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    N. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [inSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Englert, L. Houart, A. Kleinschmidt, H. Nicolai and N. Tabti, An E 9 multiplet of BPS states, JHEP 05 (2007) 065 [hep-th/0703285] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [inSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P. Townsend, Duality of type-II 7 branes and 8 branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [inSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [inSPIRE].ADSMATHCrossRefGoogle Scholar
  30. [30]
    P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    F. Riccioni and P.C. West, Dual fields and E 11, Phys. Lett. B 645 (2007) 286 [hep-th/0612001] [inSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    M. Henneaux, E. Jamsin, A. Kleinschmidt and D. Persson, On the E 10 / Massive Type IIA Supergravity Correspondence, Phys. Rev. D 79 (2009) 045008 [arXiv:0811.4358] [inSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    R.P. Geroch, A Method for generating solutions of Einstein’s equations, J. Math. Phys. 12 (1971) 918 [inSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    R.P. Geroch, A Method for generating new solutions of Einstein’s equation. 2, J. Math. Phys. 13 (1972) 394 [inSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  35. [35]
    P. Breitenlohner and D. Maison, On the Geroch Group, Annales Poincaré Phys. Theor. 46 (1987) 215 [inSPIRE].MathSciNetMATHGoogle Scholar
  36. [36]
    B. Julia, Kac-moody Symmetry Of Gravitation And Supergravity Theories, in Lectures in Applied Mathematics. Vol. 21, AMS-SIAM, Providence U.S.A. (1985), pg. 335.Google Scholar
  37. [37]
    H. Nicolai, The integrability of N = 16 supergravity, Phys. Lett. B 194 (1987) 402 [inSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    T. Damour, M. Henneaux and H. Nicolai, E 10 and a ’small tension expansion’ of M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Kleinschmidt and H. Nicolai, Gradient representations and affine structures in AE(n), Class. Quant. Grav. 22 (2005) 4457 [hep-th/0506238] [inSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    C. Hull and B. Julia, Duality and moduli spaces for timelike reductions, Nucl. Phys. B 534 (1998) 250 [hep-th/9803239] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    C. Hull, Duality and the signature of space-time, JHEP 11 (1998) 017 [hep-th/9807127] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    A. Keurentjes, E 11 : Sign of the times, Nucl. Phys. B 697 (2004) 302 [hep-th/0402090] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    L. Romans, Massive N =2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [inSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    B.R. Greene, A.D. Shapere, C. Vafa and S.-T. Yau, Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds, Nucl. Phys. B 337 (1990) 1 [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    E.A. Bergshoeff and F. Riccioni, The D-brane U-scan, arXiv:1109.1725 [inSPIRE].
  46. [46]
    E. Bergshoeff, T. Ortín and F. Riccioni, Defect Branes, arXiv:1109.4484 [inSPIRE].
  47. [47]
    J.H. Schwarz and P.C. West, Symmetries and Transformations of Chiral N =2 D = 10 Supergravity, Phys. Lett. B 126 (1983) 301 [inSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    I. Schnakenburg and P.C. West, Kac-Moody symmetries of 2B supergravity, Phys. Lett. B 517 (2001) 421 [hep-th/0107181] [inSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    A. Kleinschmidt and H. Nicolai, IIB supergravity and E 10, Phys. Lett. B 606 (2005) 391 [hep-th/0411225] [inSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [inSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and solitons, Nucl. Phys. B 340 (1990) 33 [inSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstitutePotsdamGermany
  2. 2.International Solvay InstitutesBoulevard du TriompheBelgium

Personalised recommendations