Advertisement

Journal of High Energy Physics

, 2011:108 | Cite as

Reggeon exchange from gauge/gravity duality

  • Matteo Giordano
  • Robi Peschanski
Open Access
Article

Abstract

We perform the analysis of quark-antiquark Reggeon exchange in meson-meson scattering, in the framework of the gauge/gravity correspondence in a confining background. On the gauge theory side, Reggeon exchange is described as quark-antiquark exchange in the t channel between fast projectiles. The corresponding amplitude is represented in terms of Wilson loops running along the trajectories of the constituent quarks and antiquarks. The paths of the exchanged fermions are integrated over, while the “spectator” fermions are dealt with in an eikonal approximation. On the gravity side, we follow a previously proposed approach, and we evaluate the Wilson-loop expectation value by making use of gauge/gravity duality for a generic confining gauge theory. The amplitude is obtained in a saddle-point approximation through the determination near the confining horizon of a Euclidean “minimal surface with floating boundaries”, i.e., by fixing the trajectories of the exchanged quark and antiquark by means of a minimisation procedure, which involves both area and length terms. After discussing, as a warm-up exercise, a simpler problem on a plane involving a soap film with floating boundaries, we solve the variational problem relevant to Reggeon exchange, in which the basic geometry is that of a helicoid. A compact expression for the Reggeon-exchange amplitude, including the effects of a small fermion mass, is then obtained through analytic continuation from Euclidean to Minkowski space-time. We find in particular a linear Regge trajectory, corresponding to a Regge-pole singularity supplemented by a logarithmic cut induced by the non-zero quark mass. The analytic continuation leads also to companion contributions, corresponding to the convolution of the same Reggeon-exchange amplitude with multiple elastic rescattering interactions between the colliding mesons.

Keywords

Gauge-gravity correspondence Nonperturbative Effects 

References

  1. [1]
    A.M. Polyakov, String theory and quark confinement, Nucl. Phys. Proc. Suppl. 68 (1998) 1 [hep-th/9711002] [inSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [inSPIRE].MathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [inSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [inSPIRE].MathSciNetADSMATHGoogle Scholar
  5. [5]
    G. Policastro, D. Son and A. Starinets, The Shear viscosity of strongly coupled N =4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [inSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT , Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [inSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    A. Bernamonti and R. Peschanski, Time-dependent AdS/CFT correspondence and the quark-gluon plasma, Nucl. Phys. Proc. Suppl. 216 (2011) 94 [arXiv:1102.0725] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [inSPIRE].MathSciNetMATHGoogle Scholar
  9. [9]
    J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [inSPIRE].ADSGoogle Scholar
  11. [11]
    R. Janik and R.B. Peschanski, High-energy scattering and the AdS/CFT correspondence, Nucl. Phys. B 565 (2000) 193 [hep-th/9907177] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    R. Janik and R.B. Peschanski, Minimal surfaces and Reggeization in the AdS/CFT correspondence, Nucl. Phys. B 586 (2000) 163 [hep-th/0003059] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R.A. Janik, String fluctuations, AdS/CFT and the soft Pomeron intercept, Phys. Lett. B 500 (2001) 118 [hep-th/0010069] [inSPIRE].ADSGoogle Scholar
  14. [14]
    R. Janik and R.B. Peschanski, Reggeon exchange from AdS/CFT, Nucl. Phys. B 625 (2002) 279 [hep-th/0110024] [inSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Giordano and R. Peschanski, High Energy Bounds on Soft N =4 SYM Amplitudes from AdS/CFT, JHEP 05 (2010) 037 [arXiv:1003.2309] [inSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.D.B. Collins, An Introduction to Regge Theory and High-Energy Physics, Cambridge University Press, Cambridge U.K. (1977).CrossRefGoogle Scholar
  17. [17]
    O. Nachtmann, Considerations concerning diffraction scattering in quantum chromodynamics, Annals Phys. 209 (1991) 436 [inSPIRE].ADSMATHCrossRefGoogle Scholar
  18. [18]
    H.G. Dosch, E. Ferreira and A. Kramer, Nonperturbative QCD treatment of high-energy hadron hadron scattering, Phys. Rev. D 50 (1994) 1992 [hep-ph/9405237] [inSPIRE].ADSGoogle Scholar
  19. [19]
    E. Meggiolaro, A Remark on the high-energy quark quark scattering and the eikonal approximation, Phys. Rev. D 53 (1996) 3835 [hep-th/9506043] [inSPIRE].ADSGoogle Scholar
  20. [20]
    O. Nachtmann, High-energy collisions and nonperturbative QCD, in Perturbative and nonperturbative aspects of quantum field theory, proceedings of the 35th International University School Of Nuclear And Particle Physics, Schladming Austria (1996), H. Latal and W. Schweiger eds., Springer-Verlag, Heidelberg Germany (1997) [hep-ph/9609365] [inSPIRE].
  21. [21]
    E.R. Berger and O. Nachtmann, Differential cross-sections for high-energy elastic hadron hadron scattering in nonperturbative QCD, Eur. Phys. J. C7 (1999) 459 [hep-ph/9808320] [inSPIRE].ADSGoogle Scholar
  22. [22]
    H.G. Dosch, in At the frontier of Particle Physics — Handbook of QCD (Boris Ioffe Festschrift). Vol. 2, M. Shifman eds., World Scientific, Singapore (2001), pp. 1195–1236.Google Scholar
  23. [23]
    E. Meggiolaro, Eikonal propagators and high-energy parton parton scattering in gauge theories, Nucl. Phys. B 602 (2001) 261 [hep-ph/0009261] [inSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Shoshi, F. Steffen and H. Pirner, S matrix unitarity, impact parameter profiles, gluon saturation and high-energy scattering, Nucl. Phys. A 709 (2002) 131 [hep-ph/0202012] [inSPIRE].ADSGoogle Scholar
  25. [25]
    A. Shoshi, F. Steffen, H.G. Dosch and H. Pirner, Confining QCD strings, Casimir scaling and a Euclidean approach to high-energy scattering, Phys. Rev. D 68 (2003) 074004 [hep-ph/0211287] [inSPIRE].ADSGoogle Scholar
  26. [26]
    E.V. Shuryak and I. Zahed, Instanton induced effects in QCD high-energy scattering, Phys. Rev. D 62 (2000) 085014 [hep-ph/0005152] [inSPIRE].ADSGoogle Scholar
  27. [27]
    M. Giordano and E. Meggiolaro, High-energy hadron-hadron (dipole-dipole) scattering from lattice QCD, Phys. Rev. D 78 (2008) 074510 [arXiv:0808.1022] [inSPIRE].ADSGoogle Scholar
  28. [28]
    M. Giordano and E. Meggiolaro, Instanton effects on Wilson-loop correlators: a new comparison with numerical results from the lattice, Phys. Rev. D 81 (2010) 074022 [arXiv:0910.4505] [inSPIRE].ADSGoogle Scholar
  29. [29]
    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R.C. Brower, M.J. Strassler and C.-I. Tan, On the eikonal approximation in AdS space, JHEP 03 (2009) 050 [arXiv:0707.2408] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    R.C. Brower, M.J. Strassler and C.-I. Tan, On The Pomeron at Large ’t Hooft Coupling, JHEP 03 (2009) 092 [arXiv:0710.4378] [inSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R.C. Brower, M. Djuric and C.-I. Tan, Odderon in gauge/string duality, JHEP 07 (2009) 063 [arXiv:0812.0354] [inSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Brower, M. Djuric and C.-I. Tan, Elastic and Diffractive Scattering after AdS/CFT, arXiv:0911.3463 [inSPIRE].
  34. [34]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019 [hep-th/0611122] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [inSPIRE].
  38. [38]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methodsin AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, DIS on a Large Nucleus in AdS/CFT, JHEP 07 (2008) 074 [arXiv:0806.1484] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Taliotis, DIS from the AdS/CFT correspondence, Nucl. Phys. A 830 (2009) 299C–302C [arXiv:0907.4204] [inSPIRE].
  41. [41]
    A. Mueller, A. Shoshi and B.-W. Xiao, Deep inelastic and dipole scattering on finite length hot N =4 SYM matter, Nucl. Phys. A 822 (2009) 20 [arXiv:0812.2897] [inSPIRE].ADSGoogle Scholar
  42. [42]
    E. Levin and I. Potashnikova, Soft interaction at high energy and N =4 SYM, JHEP 06 (2009) 031 [arXiv:0902.3122] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    D. Kharzeev and E. Levin, D-instantons and multiparticle production in N =4 SYM, JHEP 01 (2010) 046 [arXiv:0910.3355] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    E. Avsar, Y. Hatta and T. Matsuo, Odderon in baryon-baryon scattering from the AdS/CFT correspondence, JHEP 03 (2010) 037 [arXiv:0912.3806] [inSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Y. Makeenko, Effective String Theory and QCD Scattering Amplitudes, Phys. Rev. D 83 (2011) 026007 [arXiv:1012.0708] [inSPIRE].ADSGoogle Scholar
  46. [46]
    R.A. Brandt, F. Neri and D. Zwanziger, Lorentz invariance from classical particle paths in quantum field theory of electric and magnetic charge, Phys. Rev. D 19 (1979) 1153 [inSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    R.A. Brandt, A. Gocksch, M. Sato and F. Neri, Loop space, Phys. Rev. D 26 (1982) 3611 [inSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    A.M. Polyakov, Fermi-Bose Transmutations Induced by Gauge Fields, Mod. Phys. Lett. A 3 (1988) 325 [in SPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    G. Korchemsky, Quantum geometry of the Dirac fermions, Phys. Lett. B 232 (1989) 334 [inSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    G. Korchemsky, Quantum geometry of Dirac fermions, Int. J. Mod. Phys. A 7 (1992) 339 [inSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    E. Meggiolaro, The High-energy quark quark scattering: From Minkowskian to Euclidean theory, Z. Phys. C 76 (1997) 523 [hep-th/9602104] [inSPIRE].Google Scholar
  52. [52]
    E. Meggiolaro, The Analytic continuation of the high-energy quark quark scattering amplitude, Eur. Phys. J. C 4 (1998) 101 [hep-th/9702186] [inSPIRE].ADSGoogle Scholar
  53. [53]
    E. Meggiolaro, The Analytic continuation of the high-energy parton-parton scattering amplitude with an IR cutoff, Nucl. Phys. B 625 (2002) 312 [hep-ph/0110069] [inSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E. Meggiolaro, On the loop-loop scattering amplitudes in Abelian and non-Abelian gauge theories, Nucl. Phys. B 707 (2005) 199 [hep-ph/0407084] [inSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Giordano and E. Meggiolaro, Analyticity and crossing symmetry of the eikonal amplitudes in gauge theories, Phys. Rev. D 74 (2006) 016003 [hep-ph/0602143] [inSPIRE].ADSGoogle Scholar
  56. [56]
    E. Meggiolaro, Can the Pomeron be derived from a Euclidean-Minkowskian duality?, Phys. Lett. B 651 (2007) 177 [hep-ph/0612307] [inSPIRE].ADSGoogle Scholar
  57. [57]
    M. Giordano and E. Meggiolaro, A Nonperturbative foundation of the Euclidean-Minkowskian duality of Wilson-loop correlation functions, Phys. Lett. B 675 (2009) 123 [arXiv:0902.4145] [inSPIRE].ADSGoogle Scholar
  58. [58]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    S.G. Naculich and H.J. Schnitzer, Regge behavior of gluon scattering amplitudes in N =4 SYM theory, Nucl. Phys. B 794 (2008) 189 [arXiv:0708.3069] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    M. Giordano, R. Peschanski and S. Seki, N =4 SYM Regge Amplitudes and Minimal Surfaces in AdS/CFT Correspondence, arXiv:1110.3680 [inSPIRE].
  61. [61]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [inSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  62. [62]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [inSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [inSPIRE].MathSciNetADSGoogle Scholar
  65. [65]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops, confinement and phase transitions in large-N gauge theories from supergravity, JHEP 06 (1998) 001 [hep-th/9803263] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    Y. Kinar, E. Schreiber and J. Sonnenschein, Q anti-Q potential from strings in curved space-time: Classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [inSPIRE].MathSciNetCrossRefGoogle Scholar
  67. [67]
    Y. Kinar, E. Schreiber, J. Sonnenschein and N. Weiss, Quantum fluctuations of Wilson loops from string models, Nucl. Phys. B 583 (2000) 76 [hep-th/9911123] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    P.A. Frampton, Dual resonance models and superstrings, World Scientific, Singapore (1986).Google Scholar
  69. [69]
    M. Giordano, Wilson-loop formalism for Reggeon exchange in soft high-energy scattering, to appear.Google Scholar
  70. [70]
    A. Armoni, Beyond The Quenched (or Probe Brane) Approximation in Lattice (or Holographic) QCD, Phys. Rev. D 78 (2008) 065017 [arXiv:0805.1339] [inSPIRE].ADSGoogle Scholar
  71. [71]
    M. Giordano and R. Peschanski, Reggeon exchange from Gauge/Gravity duality: loop corrections and unitarity, work in progress.Google Scholar
  72. [72]
    U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Minimal Surfaces I: Boundary Value Problems, Springer-Verlag, Berlin Germany (1992).Google Scholar
  73. [73]
    M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [inSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. I, Nuovo Cim. A 42 (1966) 930.ADSCrossRefGoogle Scholar
  75. [75]
    L. Łukaszuk and A. Martin, Absolute upper bounds for π π scattering, Nuovo Cim. A 52 (1967) 122.ADSCrossRefGoogle Scholar
  76. [76]
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables, Dover, New York U.S.A. (1964).MATHGoogle Scholar
  77. [77]
    I. Korchemskaya and G. Korchemsky, Polyakov spin factor, Berry phase and random walk of spinning particles, J. Phys. A 24 (1991) 4511 [inSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  2. 2.Institut de Physique Théorique CEA -SaclayGif-sur-Yvette CedexFrance

Personalised recommendations