Leptons in holographic composite Higgs models with non-abelian discrete symmetries

  • Claudia Hagedorn
  • Marco Serone


We study leptons in holographic composite Higgs models, namely in models possibly admitting a weakly coupled description in terms of five-dimensional (5D) theories. We introduce two scenarios leading to Majorana or Dirac neutrinos, based on the non-abelian discrete group S 4 × Z 3 which is responsible for nearly tri-bimaximal lepton mixing. The smallness of neutrino masses is naturally explained and normal/inverted mass ordering can be accommodated. We analyze two specific 5D gauge-Higgs unification models in warped space as concrete examples of our framework. Both models pass the current bounds on Lepton Flavour Violation (LFV) processes. We pay special attention to the effect of so called boundary kinetic terms that are the dominant source of LFV. The model with Majorana neutrinos is compatible with a Kaluza-Klein vector mass scale m KK ≳ 3.5 TeV, which is roughly the lowest scale allowed by electroweak considerations. The model with Dirac neutrinos, although not strongly constrained by LFV processes and data on lepton mixing, suffers from a too large deviation of the neutrino coupling to the Z boson from its Standard Model value, pushing m KK ≳ 10 TeV.


Discrete and Finite Symmetries Neutrino Physics Field Theories in Higher Dimensions Technicolor and Composite Models 


  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSGoogle Scholar
  2. [2]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].
  3. [3]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1133 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  10. [10]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P. Harrison and W. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Harrison and W. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    K. Agashe, T. Okui and R. Sundrum, A common origin for neutrino anarchy and charged hierarchies, Phys. Rev. Lett. 102 (2009) 101801 [arXiv:0810.1277] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Agashe, Relaxing constraints from lepton flavor violation in 5D flavorful theories, Phys. Rev. D 80 (2009) 115020 [arXiv:0902.2400] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Fitzpatrick, G. Perez and L. Randall, Flavor from minimal flavor violation & a viable Randall-Sundrum model, arXiv:0710.1869 [INSPIRE].
  24. [24]
    G. Perez and L. Randall, Natural neutrino masses and mixings from warped geometry, JHEP 01 (2009) 077 [arXiv:0805.4652] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.-C. Chen and H.-B. Yu, Minimal flavor violation in the lepton sector of the Randall-Sundrum model, Phys. Lett. B 672 (2009) 253 [arXiv:0804.2503] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A 4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Kadosh and E. Pallante, An A 4 flavor model for quarks and leptons in warped geometry, JHEP 08 (2010) 115 [arXiv:1004.0321] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry, Nucl. Phys. B 775 (2007) 120 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Lam, Symmetry of lepton mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [INSPIRE].ADSGoogle Scholar
  31. [31]
    C. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Lam, The unique horizontal symmetry of leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Lam, A bottom-up analysis of horizontal symmetry, arXiv:0907.2206 [INSPIRE].
  34. [34]
    N. Arkani-Hamed, Y. Grossman and M. Schmaltz, Split fermions in extra dimensions and exponentially small cross-sections at future colliders, Phys. Rev. D 61 (2000) 115004 [hep-ph/9909411] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Y. Grossman and D.J. Robinson, Composite Dirac neutrinos, JHEP 01 (2011) 132 [arXiv:1009.2781] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Fairlie, Higgs’ fields and the determination of the Weinberg angle, Phys. Lett. B 82 (1979) 97 [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Fairlie, Two consistent calculations of the Weinberg angle, J. Phys. G 5 (1979) L55 [INSPIRE].ADSGoogle Scholar
  38. [38]
    N. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    P. Forgacs and N. Manton, Space-time symmetries in gauge theories, Commun. Math. Phys. 72 (1980) 15 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].ADSGoogle Scholar
  41. [41]
    Y. Hosotani, Dynamical gauge symmetry breaking as the Casimir effect, Phys. Lett. B 129 (1983) 193 [INSPIRE].ADSGoogle Scholar
  42. [42]
    Y. Hosotani, Dynamics of non-integrable phases and gauge symmetry breaking, Annals Phys. 190 (1989) 233 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Panico, M. Safari and M. Serone, Simple and realistic composite Higgs models in flat extra dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    W.-F. Chang and J.N. Ng, Lepton flavor violation in extra dimension models, Phys. Rev. D 71 (2005) 053003 [hep-ph/0501161] [INSPIRE].ADSGoogle Scholar
  48. [48]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].ADSGoogle Scholar
  51. [51]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Carena, A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification, neutrino masses and dark matter in warped extra dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    R. Barbieri, A. Pomarol and R. Rattazzi, Weakly coupled Higgsless theories and precision electroweak tests, Phys. Lett. B 591 (2004) 141 [hep-ph/0310285] [INSPIRE].ADSGoogle Scholar
  57. [57]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05 (2007) 060 [hep-th/0703287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    S.J. Huber and Q. Shafi, Seesaw mechanism in warped geometry, Phys. Lett. B 583 (2004) 293 [hep-ph/0309252] [INSPIRE].ADSGoogle Scholar
  60. [60]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  61. [61]
    K. Agashe, A.E. Blechman and F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation, Phys. Rev. D 74 (2006) 053011 [hep-ph/0606021] [INSPIRE].ADSGoogle Scholar
  62. [62]
    M.S. Carena, A. Delgado, E. Ponton, T.M. Tait and C. Wagner, Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [INSPIRE].ADSGoogle Scholar
  63. [63]
    C. Csáki, Y. Grossman, P. Tanedo and Y. Tsai, Warped penguin diagrams, Phys. Rev. D 83 (2011) 073002 [arXiv:1004.2037] [INSPIRE].ADSGoogle Scholar
  64. [64]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ + → e + γ, arXiv:1107.5547 [INSPIRE].
  65. [65]
    A. Maki, Status of the MEG experiment, AIP Conf. Proc. 981 (2008) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P. Wintz, Results of the SINDRUM-II experiment, in Proceedings of the 29th International Conference on High-Energy Physics (ICHEP 98), Vancouver Canada, 23–29 Jul. 1998.Google Scholar
  67. [67]
    T. Schwetz, M. Tortola and J.W. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE] and 2011 partial update for the 2012 edition available at Scholar
  69. [69]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    MINOS collaboration, L. Whitehead, New results on muon neutrino to electron neutrino oscillations in MINOS, talk given at Joint Experimental-Theoretical Seminar, Fermilab U.S.A., 24 June 2011,; recent results from MINOS available at
  71. [71]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, arXiv:1108.0015 [INSPIRE].
  72. [72]
    G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, arXiv:1106.6028 [INSPIRE].
  73. [73]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, arXiv:1108.1376 [INSPIRE].
  74. [74]
    M. Maltoni, Status of neutrino oscillations and sterile neutrinos, talk given at International Europhysics Conference on High Energy Physics, Grenoble France, 22 July 2011,
  75. [75]
    R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C. Hagedorn and M. Serone, General lepton mixing in holographic composite Higgs models, in preparation.Google Scholar
  77. [77]
    J. Lomont, Applications of finite groups, Academic Press, New York U.S.A. (1959).MATHGoogle Scholar
  78. [78]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    L. Lavoura, General formulae for f 1 → f 2γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Dipartimento di Fisica ‘G. Galilei’Università di Padova, and INFN, Sezione di PadovaPaduaItaly
  2. 2.SISSA and INFNTriesteItaly
  3. 3.ICTPTriesteItaly

Personalised recommendations