Advertisement

Non-supersymmetric string theory

  • Emil J. Martinec
  • Daniel Robbins
  • Savdeep Sethi
Article
  • 40 Downloads

Abstract

A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.

Keywords

Tachyon Condensation M(atrix) Theories Long strings 

References

  1. [1]
    R. Rohm, Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys. B 237 (1984) 553 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSGoogle Scholar
  3. [3]
    B. Craps, S. Sethi and E.P. Verlinde, A matrix big bang, JHEP 10 (2005) 005 [hep-th/0506180] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Li and W. Song, Shock waves and cosmological matrix models, JHEP 10 (2005) 073 [hep-th/0507185] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Robbins and S. Sethi, A matrix model for the null-brane, JHEP 02 (2006) 052 [hep-th/0509204] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C.-S. Chu and P.-M. Ho, Time-dependent AdS/CFT duality and null singularity, JHEP 04 (2006) 013 [hep-th/0602054] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    S.R. Das and J. Michelson, Matrix membrane big bangs and D-brane production, Phys. Rev. D 73 (2006) 126006 [hep-th/0602099] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev. D 74 (2006) 026002 [hep-th/0602107] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    F.-L. Lin and W.-Y. Wen, Supersymmetric null-like holographic cosmologies, JHEP 05 (2006) 013 [hep-th/0602124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Li, A class of cosmological matrix models, Phys. Lett. B 626 (2005) 202 [hep-th/0506260] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J.-H. She, A matrix model for Misner universe, JHEP 01 (2006) 002 [hep-th/0509067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    B. Chen, Y.-l. He and P. Zhang, Exactly solvable model of superstring in plane-wave background with linear null dilaton, Nucl. Phys. B 741 (2006) 269 [hep-th/0509113] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    B. Craps, A. Rajaraman and S. Sethi, Effective dynamics of the matrix big bang, Phys. Rev. D 73 (2006) 106005 [hep-th/0601062] [INSPIRE].ADSGoogle Scholar
  14. [14]
    E.J. Martinec, D. Robbins and S. Sethi, Toward the end of time, JHEP 08 (2006) 025 [hep-th/0603104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    T. Banks and L. Motl, A nonsupersymmetric matrix orbifold, JHEP 03 (2000) 027 [hep-th/9910164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    S. Ganguli, O.J. Ganor and J.A. Gill, Twisted six-dimensional gauge theories on tori, matrix models,and integrable systems, JHEP 09 (2004) 014 [hep-th/0311042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M.S. Costa and M. Gutperle, The Kaluza-Klein Melvin solution in M-theory, JHEP 03 (2001) 027 [hep-th/0012072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012 [hep-th/9805170] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Adams, J. Polchinski and E. Silverstein, Don’t panic! Closed string tachyons in ALE space-times, JHEP 10 (2001) 029 [hep-th/0108075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J.A. Harvey, D. Kutasov, E.J. Martinec and G.W. Moore, Localized tachyons and RG flows, hep-th/0111154 [INSPIRE].
  23. [23]
    G.T. Horowitz, Tachyon condensation and black strings, JHEP 08 (2005) 091 [hep-th/0506166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G.T. Horowitz and E. Silverstein, The inside story: quasilocal tachyons and black holes, Phys. Rev. D 73 (2006) 064016 [hep-th/0601032] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    L.J. Dixon and J.A. Harvey, String theories in ten-dimensions without space-time supersymmetry, Nucl. Phys. B 274 (1986) 93 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    O. Bergman and M.R. Gaberdiel, Dualities of type 0 strings, JHEP 07 (1999) 022 [hep-th/9906055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J.D. Blum and K.R. Dienes, Duality without supersymmetry: the case of the SO(16) × SO(16) string, Phys. Lett. B 414 (1997) 260 [hep-th/9707148] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    J.D. Blum and K.R. Dienes, Strong/weak coupling duality relations for nonsupersymmetric string theories, Nucl. Phys. B 516 (1998) 83 [hep-th/9707160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    T. Banks, TASI lectures on matrix theory, hep-th/9911068 [INSPIRE].
  31. [31]
    W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys. 73 (2001) 419 [hep-th/0101126] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  32. [32]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  33. [33]
    A.A. Tseytlin and C. Vafa, Elements of string cosmology, Nucl. Phys. B 372 (1992) 443 [hep-th/9109048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    G.T. Horowitz and E.J. Martinec, Comments on black holes in matrix theory, Phys. Rev. D 57 (1998) 4935 [hep-th/9710217] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Seiberg and E. Witten, Spin structures in string theory, Nucl. Phys. B 276 (1986) 272 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    T. Banks and L. Motl, Heterotic strings from matrices, JHEP 12 (1997) 004 [hep-th/9703218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D.A. Lowe, Heterotic matrix string theory, Phys. Lett. B 403 (1997) 243 [hep-th/9704041] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    S.-J. Rey, Heterotic M(atrix) strings and their interactions, Nucl. Phys. B 502 (1997) 170 [hep-th/9704158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    P. Hořava, Matrix theory and heterotic strings on tori, Nucl. Phys. B 505 (1997) 84 [hep-th/9705055] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Polchinski and E. Witten, Evidence for heterotic-type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    W. Taylor and M. Van Raamsdonk, Multiple D0-branes in weakly curved backgrounds, Nucl. Phys. B 558 (1999) 63 [hep-th/9904095] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    E.J. Martinec and V. Sahakian, Black holes and the super Yang-Mills phase diagram. 2., Phys. Rev. D 59 (1999) 124005 [hep-th/9810224] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    E.J. Martinec and V. Sahakian, Black holes and five-brane thermodynamics, Phys. Rev. D 60 (1999) 064002 [hep-th/9901135] [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    E.J. Martinec, Black holes and the phases of brane thermodynamics, hep-th/9909049 [INSPIRE].
  46. [46]
    G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    O.J. Ganor, S. Ramgoolam and W. Taylor, Branes, fluxes and duality in M(atrix) theory, Nucl. Phys. B 492 (1997) 191 [hep-th/9611202] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    L. Susskind, T duality in M(atrix) theory and S duality in field theory, hep-th/9611164 [INSPIRE].
  49. [49]
    S. Sethi and L. Susskind, Rotational invariance in the M(atrix) formulation of type IIB theory, Phys. Lett. B 400 (1997) 265 [hep-th/9702101] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    T. Banks and N. Seiberg, Strings from matrices, Nucl. Phys. B 497 (1997) 41 [hep-th/9702187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Emil J. Martinec
    • 1
  • Daniel Robbins
    • 2
  • Savdeep Sethi
    • 1
  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  2. 2.Physics DepartmentUniversity of Texas at AustinAustinU.S.A.

Personalised recommendations