Erratum: Wilson loops in N = 2 super-Yang-Mills from matrix model



Gauge Theory Matrix Model Wilson Loop Curly Bracket Random Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    F. Passerini and K. Zarembo, Wilson loops in N = 2 super-Yang-Mills from matrix model, JHEP 09 (2011) 102 [arXiv:1106.5763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [INSPIRE].
  5. [5]
    T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, arXiv:1004.1222 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.NorditaStockholmSweden
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.ITEPMoscowRussia

Personalised recommendations