Advertisement

Screening in strongly coupled \( \mathcal{N} = {2^*} \) supersymmetric Yang-Mills plasma

  • Carlos Hoyos
  • Steve Paik
  • Laurence G. Yaffe
Article

Abstract

Using gauge-gravity duality, we extend thermodynamic studies and present results for thermal screening masses in strongly coupled \( \mathcal{N} = {2^*} \) supersymmetric Yang-Mills theory. This non-conformal theory is a mass deformation of maximally supersymmetric \( \mathcal{N} = 4 \) gauge theory. Results are obtained for the entropy density, pressure, specific heat, equation of state, and screening masses, down to previously unexplored low temperatures. The temperature dependence of screening masses in various symmetry channels, which characterize the longest length scales over which thermal fluctuations in the non-Abelian plasma are correlated, is examined and found to be asymptotically linear in the low temperature regime.

Keywords

Holography and quark-gluon plasmas Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    P.B. Arnold and L.G. Yaffe, The NonAbelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [SPIRES].ADSGoogle Scholar
  2. [2]
    M. Laine and O. Philipsen, The non-perturbative QCD Debye mass from a Wilson line operator, Phys. Lett. B 459 (1999) 259 [hep-lat/9905004] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    E. Laermann and O. Philipsen, Status of lattice QCD at finite temperature, Ann. Rev. Nucl. Part. Sci. 53 (2003) 163 [hep-ph/0303042] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M.J. Tannenbaum, Recent results in relativistic heavy ion collisions: From “a new state of matter” to “the perfect fluid”, Rept. Prog. Phys. 69 (2006) 2005 [nucl-ex/0603003] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MathSciNetADSMATHGoogle Scholar
  6. [6]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetADSMATHGoogle Scholar
  8. [8]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT , Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled \( \mathcal{N} = 4 \) Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [SPIRES].ADSGoogle Scholar
  15. [15]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Bak, A. Karch and L.G. Yaffe, Debye screening in strongly coupled N = 4 supersymmetric Yang-Mills plasma, JHEP 08 (2007) 049 [arXiv:0705.0994] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    I. Amado, C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Absorption Lengths in the Holographic Plasma, JHEP 09 (2007) 057 [arXiv:0706.2750] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    S. Datta and S. Gupta, Dimensional reduction and screening masses in pure gauge theories at finite temperature, Nucl. Phys. B 534 (1998) 392 [hep-lat/9806034] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    S. Datta and S. Gupta, Does the QCD plasma contain propagating gluons?, Phys. Rev. D 67 (2003) 054503 [hep-lat/0208001] [SPIRES].ADSGoogle Scholar
  21. [21]
    A. Hart, M. Laine and O. Philipsen, Static correlation lengths in QCD at high temperatures and finite densities, Nucl. Phys. B 586 (2000) 443 [hep-ph/0004060] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills Theory And Integrable Systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Buchel and J.T. Liu, Thermodynamics of the N = 2 flow, JHEP 11 (2003) 031 [hep-th/0305064] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A. Buchel, N = 2 hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2 strongly coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling, Phys. Lett. B 663 (2008) 286 [arXiv:0708.3459] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Buchel and C. Pagnutti, Bulk viscosity of N = 2 plasma, Nucl. Phys. B 816 (2009) 62 [arXiv:0812.3623] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    C. Hoyos-Badajoz, Drag and jet quenching of heavy quarks in a strongly coupled N = 2 plasma, JHEP 09 (2009) 068 [arXiv:0907.5036] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
  31. [31]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an N = 2 supergravity solution, Phys. Rev. D 63 (2001) 044009 [hep-th/0008076] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett. B 154 (1985) 268 [SPIRES].ADSGoogle Scholar
  34. [34]
    M. Günaydin, L.J. Romans and N.P. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 Supergravity, Nucl. Phys. B 259 (1985) 460 [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    N.J. Evans, C.V. Johnson and M. Petrini, The enhancon and N = 2 gauge theory/gravity RG flows, JHEP 10 (2000) 022 [hep-th/0008081] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J.M. Maldacena, Lectures on AdS/CFT, hep-th/0309246 [SPIRES].
  39. [39]
    C. Hoyos, Higher dimensional conformal field theories in the Coulomb branch, Phys. Lett. B 696 (2011) 145 [arXiv:1010.4438] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    N. Seiberg and E. Witten, Monopole Condensation, And Confinement In N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid 430 (1994) 485] [hep-th/9407087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M.R. Douglas and S.H. Shenker, Dynamics of SU(N) supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 271 [hep-th/9503163] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    S. Paik and L.G. Yaffe, Thermodynamics of SU(2) N = 2 supersymmetric Yang-Mills theory, JHEP 01 (2010) 059 [arXiv:0911.1392] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MathSciNetMATHGoogle Scholar
  47. [47]
    C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    R. de Mello Koch, A. Jevicki, M. Mihailescu and J.P. Nunes, Evaluation Of Glueball Masses From Supergravity, Phys. Rev. D 58 (1998) 105009 [hep-th/9806125] [SPIRES].ADSGoogle Scholar
  49. [49]
    R.C. Brower, S.D. Mathur and C.-I. Tan, Glueball Spectrum for QCD from AdS Supergravity Duality, Nucl. Phys. B 587 (2000) 249 [hep-th/0003115] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].ADSGoogle Scholar
  51. [51]
    O. DeWolfe and D.Z. Freedman, Notes on fluctuations and correlation functions in holographic renormalization group flows, hep-th/0002226 [SPIRES].
  52. [52]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].ADSMATHCrossRefGoogle Scholar
  53. [53]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    O. Aharony, A. Buchel and P. Kerner, The black hole in the throat — thermodynamics of strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005 [arXiv:0706.1768] [SPIRES].MathSciNetADSGoogle Scholar
  55. [55]
    W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, second edition, Cambridge Univ. Press, Cambridge U.K. (1992).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations