Where the sidewalk ends: jets and missing energy search strategies for the 7 TeV LHC

  • Daniele S. M. Alves
  • Eder Izaguirre
  • Jay G. Wacker
Open Access


This work explores the potential reach of the 7 TeV LHC to new colored states in the context of simplified models and addresses the issue of which search regions are necessary to cover an extensive set of event topologies and kinematic regimes. This article demonstrates that if searches are designed to focus on specific regions of phase space, then new physics may be missed if it lies in unexpected corners. Simple multiregion search strategies can be designed to cover all of kinematic possibilities. A set of benchmark models are created that cover the qualitatively different signatures and a benchmark multiregion search strategy is presented that covers these models.


Phenomenological Models Supersymmetry Phenomenology 


  1. [1]
    CDF collaboration, A. Abulencia et al., Search for large extra dimensions in the production of jets and missing transverse energy in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 97 (2006) 171802 [hep-ex/0605101] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    CDF collaboration, X. Portell Bueso, Searches for squarks and gluinos at CDF and D0 detectors, AIP Conf. Proc. 842 (2006) 640 [hep-ex/0609017] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    D0 collaboration, V.M. Abazov et al., Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb −1 of \( p\bar{p} \) collision data at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 660 (2008) 449 [arXiv:0712.3805] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    CDF and D0 collaborations S.M. Wang, Searches for squark and gluino production at the Tevatron, AIP Conf. Proc. 1078 (2009) 259 [SPIRES].ADSGoogle Scholar
  5. [5]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider: Multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [SPIRES].ADSGoogle Scholar
  6. [6]
    C. Macesanu, C.D. McMullen and S. Nandi, Collider implications of universal extra dimensions, Phys. Rev. D 66 (2002) 015009 [hep-ph/0201300] [SPIRES].ADSGoogle Scholar
  7. [7]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [SPIRES].ADSGoogle Scholar
  8. [8]
    C. Macesanu, C.D. McMullen and S. Nandi, New signal for universal extra dimensions, Phys. Lett. B 546 (2002) 253 [hep-ph/0207269] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    A. Falkowski, O. Lebedev and Y. Mambrini, SUSY Phenomenology of KKLT Flux Compactifications, JHEP 11 (2005) 034 [hep-ph/0507110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    H. Baer, E.-K. Park, X. Tata and T.T. Wang, Collider and dark matter searches in models with mixed modulus-anomaly mediated SUSY breaking, JHEP 08 (2006) 041 [hep-ph/0604253] [SPIRES].ADSGoogle Scholar
  11. [11]
    K. Kawagoe and M.M. Nojiri, Discovery of supersymmetry with degenerated mass spectrum, Phys. Rev. D 74 (2006) 115011 [hep-ph/0606104] [SPIRES].ADSGoogle Scholar
  12. [12]
    H. Baer, E.-K. Park, X. Tata and T.T. Wang, Collider and Dark Matter Phenomenology of Models with Mirage Unification, JHEP 06 (2007) 033 [hep-ph/0703024] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    W.S. Cho, Y.G. Kim, K.Y. Lee, C.B. Park and Y. Shimizu, LHC signature of mirage mediation, JHEP 04 (2007) 054 [hep-ph/0703163] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    CMS collaboration, T. Yetkin and M. Spiropulu, Inclusive SUSY searches using missing energy plus multijets in p p collisions at \( \sqrt {s} = 14 \) TeV with CMS, Acta Phys. Polon. B 38 (2007) 661 [SPIRES].ADSGoogle Scholar
  15. [15]
    ATLAS collaboration, U. De Sanctis, Supersymmetry searches at LHC, Nuovo Cim. B 123 (2008) 793 [SPIRES].ADSGoogle Scholar
  16. [16]
    D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [SPIRES].ADSGoogle Scholar
  17. [17]
    H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = 10 \) and 14 TeV without and with missing E T, JHEP 09 (2009) 063 [arXiv:0907.1922] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    S.-G. Kim, N. Maekawa, K.I. Nagao, M.M. Nojiri and K. Sakurai, LHC signature of supersymmetric models with non-universal sfermion masses, JHEP 10 (2009) 005 [arXiv:0907.4234] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    ATLAS and CMS collaborations, N. Ozturk, Search for Supersymmetry Signatures at the LHC, arXiv:0910.2964 [SPIRES].
  20. [20]
    CMS collaboration, G. Lungu, Search for supersymmetry at the CMS in all-hadronic final state, arXiv:0910.3310 [SPIRES].
  21. [21]
    E. Turlay, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Supersymmetry with Heavy Scalars, J. Phys. G 38 (2011) 035003 [arXiv:1011.0759] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    D. Krohn, L. Randall and L.-T. Wang, On the Feasibility and Utility of ISR Tagging, arXiv:1101.0810 [SPIRES].
  23. [23]
    J. Fan, D. Krohn, P. Mosteiro, A.M. Thalapillil and L.-T. Wang, Heavy Squarks at the LHC, JHEP 03 (2011) 077 [arXiv:1102.0302] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    S. Scopel, S. Choi, N. Fornengo and A. Bottino, Impact of the recent results by the CMS and ATLAS Collaborations at the CERN Large Hadron Collider on an effective Minimal Supersymmetric extension of the Standard Model, Phys. Rev. D 83 (2011) 095016 [arXiv:1102.4033] [SPIRES].ADSGoogle Scholar
  25. [25]
    P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, LHC Signatures of the Constrained Exceptional Supersymmetric Standard Model, arXiv:1102.4363 [SPIRES].
  26. [26]
    M. Guchait and D. Sengupta, Event-shape selection cuts for supersymmetry searches at the LHC with 7 TeV energy, arXiv:1102.4785 [SPIRES].
  27. [27]
    P. Bechtle et al., What if the LHC does not find supersymmetry in the \( \sqrt {s} = 7 \) TeV run?, Phys. Rev. D 84 (2011) 011701 [arXiv:1102.4693] [SPIRES].ADSGoogle Scholar
  28. [28]
    C. Englert, T. Plehn, P. Schichtel and S. Schumann, Jets plus Missing Energy with an Autofocus, Phys. Rev. D 83 (2011) 095009 [arXiv:1102.4615] [SPIRES].ADSGoogle Scholar
  29. [29]
    O. Buchmueller et al., Implications of Initial LHC Searches for Supersymmetry, Eur. Phys. J. C 71 (2011) 1634 [arXiv:1102.4585] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Searching for Directly Decaying Gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34 [arXiv:0803.0019] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-Independent Jets plus Missing Energy Searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [SPIRES].ADSGoogle Scholar
  32. [32]
    CDF collaboration, T. Aaltonen et al., Model-Independent Global Search for New High-pT Physics at CDF, arXiv:0712.2534 [SPIRES].
  33. [33]
    CDF collaboration, T. Aaltonen et al., Model-Independent and Quasi-Model-Independent Search for New Physics at CDF, Phys. Rev. D 78 (2008) 012002 [arXiv:0712.1311] [SPIRES].ADSGoogle Scholar
  34. [34]
    CDF collaboration, C. Henderson, Results Of A Model-Independent Global Search For New Physics At CDF, arXiv:0805.0742 [SPIRES].
  35. [35]
    N. Arkani-Hamed et al., MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories, hep-ph/0703088 [SPIRES].
  36. [36]
    J. Alwall, P. Schuster and N. Toro, Simplified Models for a First Characterization of New Physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [SPIRES].ADSGoogle Scholar
  37. [37]
    E. Izaguirre, M. Manhart and J.G. Wacker, Bigger, Better, Faster, More at the LHC, JHEP 12 (2010) 030 [arXiv:1003.3886] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    CERN Workshop on Characterization of New Physics at the LHC, CERN, Geneva Switzerland, 4 June 2010.Google Scholar
  39. [39]
    D.S.M. Alves, E. Izaguirre and J.G. Wacker, It’s On: Early Interpretations of ATLAS Results in Jets and Missing Energy Searches, Phys. Lett. B 702 (2011) 64 [arXiv:1008.0407] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    N. Arkani-Hamed, G.L. Kane, J. Thaler and L.-T. Wang, Supersymmetry and the LHC inverse problem, JHEP 08 (2006) 070 [hep-ph/0512190] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry Without Prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le and T.G. Rizzo, Supersymmetry Without Prejudice at the LHC, Eur. Phys. J. C 71 (2011) 1697 [arXiv:1009.2539] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].ADSGoogle Scholar
  44. [44]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [SPIRES].ADSGoogle Scholar
  45. [45]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    T. Gregoire and E. Katz, A composite gluino at the LHC, JHEP 12 (2008) 084 [arXiv:0801.4799] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    T. Plehn and T.M.P. Tait, Seeking Sgluons, J. Phys. G 36 (2009) 075001 [arXiv:0810.3919] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    H. Baer, S. de Alwis, K. Givens, S. Rajagopalan and H. Summy, Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC, JHEP 05 (2010) 069 [arXiv:1002.4633] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    M.M. Nojiri and J. Shu, Two jets and missing E T signature to determine the spins of the new particles, JHEP 06 (2011) 047 [arXiv:1101.2701] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    H.E. Haber and G.L. Kane, Gluino Decays And Experimental Signatures, Nucl. Phys. B 232 (1984) 333 [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    E. Ma and G.-G. Wong, Two-body Radiative Gluino Decays, Mod. Phys. Lett. A 3 (1988) 1561 [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    H. Baer et al., Gluino Decays To W And Z Bosons At The Ssc, Int. J. Mod. Phys. A 2 (1987) 1131.ADSCrossRefGoogle Scholar
  53. [53]
    H. Baer, X. Tata and J. Woodside, Phenomenology Of Gluino Decays Via Loops And Top Quark Yukawa Coupling, Phys. Rev. D 42 (1990) 1568 [SPIRES].ADSGoogle Scholar
  54. [54]
    M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    M. Adeel Ajaib, T. Li, Q. Shafi and K. Wang, NLSP Gluino Search at the Tevatron and early LHC, JHEP 01 (2011) 028 [arXiv:1011.5518] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    S. Raby and K. Tobe, Dynamical SUSY breaking with a hybrid messenger sector, Phys. Lett. B 437 (1998) 337 [hep-ph/9805317] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    S. Raby and K. Tobe, The phenomenology of SUSY models with a gluino LSP, Nucl. Phys. B 539 (1999) 3 [hep-ph/9807281] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    A. Mafi and S. Raby, An analysis of a Heavy Gluino LSP at CDF : The Heavy Gluino Window, Phys. Rev. D 62 (2000) 035003 [hep-ph/9912436] [SPIRES].ADSGoogle Scholar
  59. [59]
    A. Mafi and S. Raby, A solution to the mu problem in the presence of a heavy gluino LSP, Phys. Rev. D 63 (2001) 055010 [hep-ph/0009202] [SPIRES].ADSGoogle Scholar
  60. [60]
    W. Kilian, T. Plehn, P. Richardson and E. Schmidt, Split supersymmetry at colliders, Eur. Phys. J. C 39 (2005) 229 [hep-ph/0408088] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    T. Han, R. Mahbubani, D.G.E. Walker and L.-T. Wang, Top Quark Pair plus Large Missing Energy at the LHC, JHEP 05 (2009) 117 [arXiv:0803.3820] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    B.S. Acharya et al., Identifying Multi-Top Events from Gluino Decay at the LHC, arXiv:0901.3367 [SPIRES].
  63. [63]
    R. Barbieri, G.R. Dvali and L.J. Hall, Predictions From A U(2) Flavour Symmetry In Supersymmetric Theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Z′-mediated Supersymmetry Breaking, Phys. Rev. Lett. 100 (2008) 041802 [arXiv:0710.1632] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    L.L. Everett, I.-W. Kim, P. Ouyang and K.M. Zurek, Moduli Stabilization and Supersymmetry Breaking in Deected Mirage Mediation, JHEP 08 (2008) 102 [arXiv:0806.2330] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSMAn M Theory motivated model of Particle Physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [SPIRES].ADSGoogle Scholar
  68. [68]
    J.J. Heckman and C. Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452 [SPIRES].
  69. [69]
    R. Sundrum, SUSY Splits, But Then Returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A Non Standard Supersymmetric Spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    G.L. Kane, E. Kuik, R. Lu and L.-T. Wang, Top Channel for Early SUSY Discovery at the LHC, arXiv:1101.1963 [SPIRES].
  72. [72]
    R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy avor simplified models at the LHC, in preparation.Google Scholar
  73. [73]
    R.M. Barnett, J.F. Gunion and H.E. Haber, Gluino Decay Patterns And Signatures, Phys. Rev. D 37 (1988) 1892 [SPIRES].ADSGoogle Scholar
  74. [74]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    C.W. Bauer and B.O. Lange, Scale setting and resummation of logarithms in ppV + jets, arXiv:0905.4739 [SPIRES].
  77. [77]
    T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [SPIRES].ADSCrossRefGoogle Scholar
  78. [78]
    A. Papaefstathiou and B. Webber, Effects of QCD radiation on inclusive variables for determining the scale of new physics at hadron colliders, JHEP 06 (2009) 069 [arXiv:0903.2013] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    J. Alwall, K. Hiramatsu, M.M. Nojiri and Y. Shimizu, Novel reconstruction technique for New Physics processes with initial state radiation, Phys. Rev. Lett. 103 (2009) 151802 [arXiv:0905.1201] [SPIRES].ADSCrossRefGoogle Scholar
  80. [80]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  81. [81]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comp. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [SPIRES].ADSCrossRefGoogle Scholar
  83. [83]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  84. [84]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    A. Schalicke and F. Krauss, Implementing the ME + PS merging algorithm, JHEP 07 (2005) 018 [hep-ph/0503281] [SPIRES].ADSCrossRefGoogle Scholar
  86. [86]
    F. Krauss, A. Schalicke, S. Schumann and G. Soff, Simulating W/Z + jets production at the CERN LHC, Phys. Rev. D 72 (2005) 054017 [hep-ph/0503280] [SPIRES].ADSGoogle Scholar
  87. [87]
    T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [SPIRES].ADSCrossRefGoogle Scholar
  89. [89]
    S. de Visscher, J. Alwall and F. Maltoni, Radiation of extra-jets in inclusive SUSY samples, AIP Conf. Proc. 1078 (2009) 293 [SPIRES].Google Scholar
  90. [90]
    J. Alwall, K. Hiramatsu, M.M. Nojiri and Y. Shimizu, Novel reconstruction technique for New Physics processes with initial state radiation, Phys. Rev. Lett. 103 (2009) 151802 [arXiv:0905.1201] [SPIRES].ADSCrossRefGoogle Scholar
  91. [91]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].ADSGoogle Scholar
  92. [92]
    N. Kidonakis and R. Vogt, The Theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].ADSGoogle Scholar
  93. [93]
    ATLAS collaboration, Prospects for Supersymmetry discovery based on inclusive searches at a 7TeV centre-of-mass energy with the ATLAS detector, ATLAS Note ATL-PHYS-PUB-2010-010,
  94. [94]
    ATLAS collaboration, I. Vivarelli, Search for supersymmetry in jets plus missing transverse momentum final states with the ATLAS detector,
  95. [95]
    C.F. Berger et al., Next-to-Leading Order QCD Predictions for W + 3 Jet Distributions at Hadron Colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].ADSGoogle Scholar
  96. [96]
    D. Maître et al., Multi-jet processes at NLO, PoS(EPS-HEP 2009)367 [arXiv:0909.4949] [SPIRES].
  97. [97]
    J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W + 2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [SPIRES].ADSGoogle Scholar
  98. [98]
    J. Conway, PGS: Pretty Good Simulator, conway/research/software/pgs/pgs4-general.htm.
  99. [99]
    D. Krohn, J. Thaler and L.-T. Wang, Jets with Variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [SPIRES].ADSCrossRefGoogle Scholar
  100. [100]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSCrossRefGoogle Scholar
  101. [101]
    G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly Degenerate Gauginos and Dark Matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Daniele S. M. Alves
    • 1
    • 2
  • Eder Izaguirre
    • 1
    • 2
  • Jay G. Wacker
    • 1
    • 2
  1. 1.Theory Group, SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  2. 2.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations