Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4

  • Davide Meloni


The recent analyses of the world neutrino data, including the T2K and MINOS results, point toward a statistically significant deviation of θ 13 from zero. In this paper we present a SUSY SU(5) model based on the discrete S 4 group which predicts a large \( {\theta_{13}} \sim \mathcal{O}\left( {{\lambda_C}} \right) \), λ C being the Cabibbo angle. The other mixing angles in the neutrino sector are all compatible with current experimental data. In the quark sector, the entries of the CKM mixing matrix as well as the mass hierarchies in both up and down quark sectors are well reproduced and only a small enhancement is needed to reproduce λ C .


Neutrino Physics Discrete and Finite Symmetries GUT Large Extra Dimensions 


  1. [1]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    T. Schwetz, M. Tortola and J.W.F. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, arXiv:1106.6028 [SPIRES].
  6. [6]
    MINOS collaboration], L. Whitehead, Recent results from MINOS,
  7. [7]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [SPIRES].ADSGoogle Scholar
  8. [8]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  9. [9]
    P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [SPIRES].ADSGoogle Scholar
  10. [10]
    Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].ADSGoogle Scholar
  11. [11]
    P.F. Harrison and W.G. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [SPIRES].ADSGoogle Scholar
  12. [12]
    P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    P.F. Harrison and W.G. Scott, Status of tri-/bi-maximal neutrino mixing, hep-ph/0402006 [SPIRES].
  14. [14]
    P.F. Harrison and W.G. Scott, The simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [SPIRES].ADSGoogle Scholar
  15. [15]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Lin, Tri-bimaximal Neutrino Mixing from A 4 and θ 13 ∼ θ C, Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    G. Altarelli, F. Feruglio and L. Merlo, Revisiting Bimaximal Neutrino Mixing in a Model with S 4 Discrete Symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    K.M. Patel, An SO(10) × S 4 Model of Quark-Lepton Complementarity, Phys. Lett. B 695 (2011) 225 [arXiv:1008.5061] [SPIRES].ADSGoogle Scholar
  19. [19]
    R. de Adelhart Toorop, F. Bazzocchi and L. Merlo, The Interplay Between GUT and Flavour Symmetries in a Pati-Salam × S 4 Model, JHEP 08 (2010) 001 [arXiv:1003.4502] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    G.-J. Ding, SUSY adjoint SU(5) grand unified model with S 4 flavor symmetry, Nucl. Phys. B 846 (2011) 394 [arXiv:1006.4800] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    H. Ishimori, K. Saga, Y. Shimizu and M. Tanimoto, Tri-bimaximal Mixing and Cabibbo Angle in S 4 Flavor Model with SUSY, Phys. Rev. D 81 (2010) 115009 [arXiv:1004.5004] [SPIRES].ADSGoogle Scholar
  22. [22]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    H. Ishimori, Y. Shimizu and M. Tanimoto, S 4 Flavor Symmetry of Quarks and Leptons in SU(5) GUT, Prog. Theor. Phys. 121 (2009) 769 [arXiv:0812.5031] [SPIRES].ADSMATHCrossRefGoogle Scholar
  24. [24]
    E. Witten, Symmetry Breaking Patterns in Superstring Models, Nucl. Phys. B 258 (1985) 75 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    A.E. Faraggi, Doublet-triplet splitting in realistic heterotic string derived models, Phys. Lett. B 520 (2001) 337 [hep-ph/0107094] [SPIRES].ADSGoogle Scholar
  27. [27]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [SPIRES].ADSGoogle Scholar
  28. [28]
    Y. Nomura, Strongly coupled grand unification in higher dimensions, Phys. Rev. D 65 (2002) 085036 [hep-ph/0108170] [SPIRES].ADSGoogle Scholar
  29. [29]
    L.J. Hall and Y. Nomura, A complete theory of grand unification in five dimensions, Phys. Rev. D 66 (2002) 075004 [hep-ph/0205067] [SPIRES].ADSGoogle Scholar
  30. [30]
    G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [SPIRES].ADSGoogle Scholar
  31. [31]
    A. Hebecker and J. March-Russell, A minimal S 1 /(Z 2 × Z 2) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Hebecker and J. March-Russell, The flavour hierarchy and see-saw neutrinos from bulk masses in 5d orbifold GUTs, Phys. Lett. B 541 (2002) 338 [hep-ph/0205143] [SPIRES].ADSGoogle Scholar
  33. [33]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A 4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    B. Pontecorvo, Mesonium and antimesonium, Sov. Phys. JETP 6 (1957) 429. [Zh. Eksp. Teor. Fiz. 33 (1957) 549] [SPIRES].ADSGoogle Scholar
  36. [36]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].ADSMATHCrossRefGoogle Scholar
  37. [37]
    KATRIN collaboration, A. Osipowicz et al., KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass, hep-ex/0109033 [SPIRES].
  38. [38]
  39. [39]
    CUORE collaboration, A. Giuliani, From Cuoricino to CUORE: Investigating the inverted hierarchy region of neutrino mass, J. Phys. Conf. Ser. 120 (2008) 052051.ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Dipartimento di Fisica “E. Amaldi”Università degli Studi Roma TreRomaItaly

Personalised recommendations