Giant graviton oscillators

  • Robert de Mello Koch
  • Matthias Dessein
  • Dimitrios Giataganas
  • Christopher Mathwin


We study the action of the dilatation operator on restricted Schur polynomials labeled by Young diagrams with p long columns or p long rows. A new version of Schur-Weyl duality provides a powerful approach to the computation and manipulation of the symmetric group operators appearing in the restricted Schur polynomials. Using this new technology, we are able to evaluate the action of the one loop dilatation operator. The result has a direct and natural connection to the Gauss Law constraint for branes with a compact world volume. We find considerable evidence that the dilatation operator reduces to a decoupled set of harmonic oscillators. This strongly suggests that integrability in \( \mathcal{N} = 4 \) super Yang-Mills theory is not just a feature of the planar limit, but extends to other large N but non-planar limits.


Gauge-gravity correspondence AdS-CFT Correspondence 1/N Expansion Integrable Field Theories 


  1. [1]
    J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, arXiv:1012.3982 [SPIRES].
  3. [3]
    C. Kristjansen, Review of AdS/CFT integrability, chapter IV.1: aspects of non-planarity, arXiv:1012.3997 [SPIRES].
  4. [4]
    K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, arXiv:1012.3998 [SPIRES].
  5. [5]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [SPIRES].MathSciNetGoogle Scholar
  7. [7]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetADSMATHGoogle Scholar
  11. [11]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and Goliath, JHEP 08 (2000) 040 [hep-th/0008015] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 super Yang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ’Holey sheets’: Pfaffians and subdeterminants as D-brane operators in large-N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    D. Berenstein, Shape and holography: studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 [hep-th/0306090] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    D. Sadri and M.M. Sheikh-Jabbari, Giant hedge-hogs: spikes on giant gravitons, Nucl. Phys. B 687 (2004) 161 [hep-th/0312155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    R. Bhattacharyya, S. Collins and R.d.M. Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitons — with strings attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [SPIRES].CrossRefGoogle Scholar
  23. [23]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitons — with strings attached (II), JHEP 09 (2007) 049 [hep-th/0701067] [SPIRES].CrossRefGoogle Scholar
  24. [24]
    D. Bekker, R. de Mello Koch and M. Stephanou, Giant gravitons — with strings attached (III), JHEP 02 (2008) 029 [arXiv:0710.5372] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted Schur polynomial correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    R.d.M. Koch, G. Mashile and N. Park, Emergent threebrane lattices, Phys. Rev. D 81 (2010) 106009 [arXiv:1004.1108] [SPIRES].ADSGoogle Scholar
  27. [27]
    V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly simple spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [SPIRES].Google Scholar
  28. [28]
    W. Carlson, R.d.M. Koch and H. Lin, Nonplanar integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    S. Ramgoolam, Schur-Weyl duality as an instrument of gauge-string duality, AIP Conf. Proc. 1031 (2008) 255 [arXiv:0804.2764] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and Brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    E. D’Hoker and A.V. Ryzhov, Three-point functions of quarter BPS operators in N = 4 SYM, JHEP 02 (2002) 047 [hep-th/0109065] [SPIRES].MathSciNetCrossRefGoogle Scholar
  34. [34]
    E. D’Hoker, P. Heslop, P. Howe and A.V. Ryzhov, Systematics of quarter BPS operators in N = 4 SYM, JHEP 04 (2003) 038 [hep-th/0301104] [SPIRES].MathSciNetCrossRefGoogle Scholar
  35. [35]
    P.J. Heslop and P.S. Howe, OPEs and 3-point correlators of protected operators in N = 4 SYM, Nucl. Phys. B 626 (2002) 265 [hep-th/0107212] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    T.W. Brown, Permutations and the loop, JHEP 06 (2008) 008 [arXiv:0801.2094] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    T.W. Brown, Cut- and-join operators and N = 4 super Yang-Mills, JHEP 05 (2010) 058 [arXiv:1002.2099] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    M.-X. Huang, Higher genus BMN correlators: factorization and recursion relations, arXiv:1009.5447 [SPIRES].
  41. [41]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation theory of the symmetric group: the Okounkov-Vershik approach, character formulas and partition algebras, Cambridge Studies in Advanced Mathematics 121, Cambridge University Press, Cambridge U.K. (2010).MATHGoogle Scholar
  43. [43]
    W. Fulton and J. Harris, Representation theory: a first course, Springer, New York U.S.A. (1991).MATHGoogle Scholar
  44. [44]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups, Selecta Math. 2 (1996) 581. MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    A. Okounkov and A. Vershik, A new approach to the representation theory of the symmetric groups II, J. Math. Sci. 131 (2005) 5471 [Zap. Nauchn. Semin. POMI 307 (2004) 57].MathSciNetCrossRefGoogle Scholar
  47. [47]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    O. Barut and R. Raczka, Theory of group representations and applications, 2nd edition, PWN-Polish Scientific Publishers, Warsaw Poland (1986) [ISBN:8301027169].MATHGoogle Scholar
  49. [49]
    N.J. Vilenkin and A.U. Klimyk, Representation of Lie groups and special functions, volume 3, Kluwer Academic Publishers, The Netherlands (1992).MATHGoogle Scholar
  50. [50]
    A. Alex, M. Kalus, A. Huckleberry and J. von Delft, A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, J. Math. Phys. 52 (2011) 023507 [arXiv:1009.0437] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    M. Gelfand and M.L. Tsetlin, Matrix elements for the unitary group, Dokl. Akad. Nauk SSSR 71 (1950) 825 [Dokl. Akad. Nauk SSSR 71 (1950)1017] reprinted in I.M. Gelfand et al., Representations of the rotation and Lorentz group, Pergamon, Oxford U.K. (1963).Google Scholar
  52. [52]
    M. Hamermesh, Group theory and its applications to physical problems, Addison-Wesley Publishing Company, Boston U.S.A. (1962).Google Scholar
  53. [53]
    R. de Mello Koch and R. Gwyn, Giant graviton correlators from dual SU(N) super Yang-Mills theory, JHEP 11 (2004) 081 [hep-th/0410236] [SPIRES].CrossRefGoogle Scholar
  54. [54]
    R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, math.CA/9602214.
  55. [55]
    R.d.M. Koch, B.A.E. Mohammed and S. Smith, Nonplanar integrability: beyond the SU(2) sector, arXiv:1106.2483 [SPIRES].
  56. [56]
    F. Scarabotti, Multidimensional Hahn polynomials, intertwining functions on the symmetric group and Clebsch-Gordan coefficients, Methods Appl. Anal. 14 (2007) 355 [arXiv:0805.0670].MathSciNetMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Robert de Mello Koch
    • 1
    • 2
  • Matthias Dessein
    • 1
  • Dimitrios Giataganas
    • 1
  • Christopher Mathwin
    • 1
  1. 1.National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical PhysicsUniversity of the WitwatersrandWitsSouth Africa
  2. 2.Stellenbosch Institute for Advanced StudyMatielandSouth Africa

Personalised recommendations