Mind the gap: supersymmetry breaking in scaling, microstate geometries



We use a multi-species supertube solution to construct an example of a scaling microstate geometry for non-BPS black rings in five dimensions. We obtain the asymptotic charges of the microstate geometry and show how the solution is related to the corresponding non-BPS black ring. The supersymmetry is broken in a very controlled manner using holonomy and this enables a close comparison with a scaling, BPS microstate geometry. Requiring that there are no closed time-like curves near the supertubes places additional restrictions on the moduli space of physical, non-BPS solutions when compared to their BPS analogs. For large holonomy the scaling non-BPS solution always has closed time-like curves while for smaller holonomy there is a “gap” in the non-BPS moduli space relative to the BPS counterpart.


Black Holes in String Theory AdS-CFT Correspondence 


  1. [1]
    A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    B.D. Chowdhury and A. Virmani, Modave Lectures on Fuzzballs and Emission from the D1 − D5 System, arXiv:1001.1444 [SPIRES].
  7. [7]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS Black Rings and Black Holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-Center non-BPS Black Holes - the Solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity Solutions from Floating Branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, A (Running) Bolt for New Reasons, JHEP 11 (2009) 089 [arXiv:0909.2559] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Bobev and C. Ruef, The Nuts and Bolts of Einstein-Maxwell Solutions, JHEP 01 (2010) 124 [arXiv:0912.0010] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Bobev, B. Niehoff and N.P. Warner, Hair in the Back of a Throat: Non-Supersymmetric Multi-Center Solutions from Káhler Manifolds, arXiv:1103.0520 [SPIRES].
  15. [15]
    J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013 [hep-th/0408010] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    I. Bena and N.P. Warner, One ring to rule them all … and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].MathSciNetMATHGoogle Scholar
  17. [17]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with angular momentum, hep-th/0212210 [SPIRES].
  19. [19]
    I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 02 (2011) 074 [arXiv:1012.4803] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and Typical Black Hole Microstates, JHEP 11 (2006) 042 [hep-th/0608217] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black Ring Microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    D. Marolf and A. Virmani, A black hole instability in five dimensions?, JHEP 11 (2005) 026 [hep-th/0505044] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    I. Bena, C.-W. Wang and N.P. Warner, Sliding rings and spinning holes, JHEP 05 (2006) 075 [hep-th/0512157] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesU.S.A.

Personalised recommendations