Advertisement

Journal of High Energy Physics

, 2010:106 | Cite as

Notes on wall crossing and instanton in compactified gauge theory with matter

  • Heng-Yu Chen
  • Kirill Petunin
Article

Abstract

We study the quantum effects on the Coulomb branch of \( \mathcal{N} = 2 \) SU(2) super-symmetric Yang-Mills with fundamental matters compactified on \( {\mathbb{R}^3} \times {S^1} \), and extract the explicit perturbative and leading non-perturbative corrections to the moduli space metric predicted from the recent work of Gaiotto, Moore and Neitzke on wall-crossing [1]. We verify the predicted metric by computing the leading weak coupling instanton contribution to the four fermion correlation using standard field theory techniques, and demonstrate perfect agreement. We also demonstrate how previously known three dimensional quantities can be recovered in appropriate small radius limit, and provide a simple geometric picture from brane construction.

Keywords

Supersymmetric gauge theory Solitons Monopoles and Instantons Extended Supersymmetry Integrable Equations in Physics 

References

  1. [1]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv: 0807. 4723] [SPIRES]. MATHCrossRefADSGoogle Scholar
  2. [2]
    N. Seiberg and E. Witten, Monopole Condensation, And Confinement In N =2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N =2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB A pproximation, arXiv: 0907.3987 [SPIRES].
  6. [6]
    H.-Y. Chen, N. Dorey and K. Petunin, Wall Crossing and Instantons in Compactified Gauge Theory, JHEP 06 (2010) 024 [arXiv:1004.0703] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    N. Seiberg and E. Witten, Gauge dynamics and compactification to three dimensions, hep-th/9607163 [SPIRES].
  8. [8]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    N. Dorey, V.V. Khoze and M.P. Mattis, Multi-instanton calculus in N =2 supersymmetric gauge theory. II: Coupling to matter, Phys. Rev. D 54 (1996) 7832 [hep-th/9607202] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [SPIRES].
  11. [11]
    M. Kontsevich and Y. Soibelman, Motivic Donaldson-Thomas invariants: summary of results, arXiv: 0910.4315 [SPIRES].
  12. [12]
    N. Dorey, Instantons, compactification and S-duality in N =4 SUSY Yang-Mills theory. I, JHEP 04 (2001) 008 [hep-th/0010115] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    N. Dorey and A. Parnachev, Instantons, compactification and S-duality in N =4 SUSY Yang-Mills theory. II, JHEP 08 (2001) 059 [hep-th/0011202] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    N. Dorey, V.V. Khoze, M.P. Mattis, D. Tong and S. Vandoren, Instantons, three-dimensional gauge theory and the Atiyah-Hitchin manifold, Nucl. Phys. B 502 (1997) 59 [hep-th/9703228] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    N. Dorey, V.V. Khoze and M.P. Mattis, Multi-instantons, three-dimensional gauge theory and the Gauss-Bonnet-Chern theorem, Nucl. Phys. B 502 (1997) 94 [hep-th/9704197] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    M. Henningson, Discontinuous BPS spectra in N =2 gauge theory, Nucl. Phys. B 461 (1996) 101 [hep-th/9510138] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    F. Ferrari and A. Bilal, The Strong-Coupling Spectrum of the Seiberg-Witten Theory, Nucl. Phys. B 469 (1996) 387 [hep-th/9602082] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Bilal and F. Ferrari, Curves of Marginal Stability and Weak and Strong-Coupling BPS Spectra in N =2 Supersymmetric QCD, Nucl. Phys. B 480 (1996) 589 [hep-th/9605101] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    A. Bilal and F. Ferrari, The BPS spectra and superconformal points in massive N =2 supersymmetric QCD, Nucl. Phys. B 516 (1998) 175 [hep-th/9706145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    P.C. Argyres, M.R. Plesser and N. Seiberg, The Moduli Space of N =2 SUSY QCD and Duality in N =1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    J.P. Gauntlett, Low-energy dynamics of N =2 supersymmetric monopoles, Nucl. Phys. B 411 (1994) 443 [hep-th/9305068] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    J.P. Gauntlett and J.A. Harvey, S duality and the dyon spectrum in N =2 super Yang-Mills theory, Nucl. Phys. B 463 (1996) 287 [hep-th/9508156] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Constraints on the BPS spectrum of N =2,D =4 theories with A -D-E flavor symmetry, Nucl. Phys. B 534 (1998) 261 [hep-th/9805220] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    T. Dimofte, S. Gukov and Y. Soibelman, Quantum W all Crossing in N =2 Gauge T heories, arXiv:0912.1346 [SPIRES].
  25. [25]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler Metrics and Supersymmetry, Commun. Math. Phys. 108 (1987) 535 [SPIRES].MATHCrossRefADSGoogle Scholar
  26. [26]
    M.F. Atiyah and N.J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles. M.B. Porter Lectures, Princeton University Press, Princeton U.S.A. (1988).Google Scholar
  27. [27]
    H. Ooguri and C. Vafa, Summing up D-instantons, Phys. Rev. Lett. 77 (1996) 3296 [hep-th/9608079] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  28. [28]
    N. Seiberg and S.H. Shenker, Hypermultiplet moduli space and string compactification to three dimensions, Phys. Lett. B 388 (1996) 521 [hep-th/9608086] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    A.S. Dancer, Nahm’s equations and hyperKähler geometry, Commun. Math. Phys. 158 (1993) 545 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  30. [30]
    E. Tomboulis and G. Woo, Soliton Quantization in Gauge Theories, Nucl. Phys. B 107 (1976) 221 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    E. Witten, Dyons of Charge e theta/2 pi, Phys. Lett. B 86 (1979) 283 [SPIRES].ADSGoogle Scholar
  32. [32]
    C. Callias, Index Theorems on Open Spaces, Commun. Math. Phys. 62 (1978) 213 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    E.J. Weinberg, Fundamental Monopoles and Multi-Monopole Solutions for Arbitrary Simple Gauge Groups, Nucl. Phys. B 167 (1980) 500 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    N.S. Manton and B.J. Schroers, Bundles over moduli spaces and the quantization of BPS monopoles, Ann. Phys. 225 (1993) 290 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  36. [36]
    J.P. Gauntlett, C.-j. Kim, K.-M. Lee and P. Yi, General low energy dynamics of supersymmetric monopoles, Phys. Rev. D 63 (2001) 065020 [hep-th/0008031] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    N. Dorey, D. Tong and S. Vandoren, Instanton effects in three-dimensional supersymmetric gauge theories with matter, JHEP 04 (1998) 005 [hep-th/9803065] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    C.W. Bernard, Gauge zero modes, instanton determinants and quantum-chromodynamic calculations, Phys. Rev. D 19 (1979) 3013 [SPIRES].ADSGoogle Scholar
  39. [39]
    N. Dorey, T.J. Hollowood and V.V. Khoze, Notes on soliton bound-state problems in gauge theory and string theory, hep-th/0105090 [SPIRES].
  40. [40]
    J.A. Harvey, Magnetic monopoles, duality and supersymmetry, hep-th/9603086 [SPIRES].
  41. [41]
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press.Google Scholar
  42. [42]
    R.K. Kaul, Monopole mass in supersymmetric gauge theories, Phys. Lett. B 143 (1984) 427 [SPIRES].ADSGoogle Scholar
  43. [43]
    K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    J. de Boer, K. Hori and Y. Oz, Dynamics of N =2 supersymmetric gauge theories in three dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [SPIRES].ADSGoogle Scholar
  45. [45]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional gauge theories, SL(2, Z) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WisconsinMadisonU.S.A.
  2. 2.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.

Personalised recommendations