Advertisement

Vacua and RG flows in N = 9 three dimensional gauged supergravity

  • Auttakit Chatrabhuti
  • Parinya Karndumri
Article

Abstract

We study some vacua of N = 9 three dimensional gauged supergravity. The theory contains sixteen scalar fields parametrizing the exceptional coset space \( \frac{{{F_{4\left( { - 20} \right)}}}}{{{\text{SO}}(9)}} \). Various supersymmetric and some non-supersymmetric AdS3 vacua are found in both compact and non-compact gaugings with gauge groups SO(p) × SO(9 − p) for p = 0, 1, 2, 3, 4, G 2(−14) × SL(2) and Sp(1, 2) × SU(2). We also study many RG flow solutions, both analytic and numerical, interpolating between supersymmetric AdS3 critical points in this theory. All the flows considered here are driven by a relevant operator of dimension \( \Delta = \frac{3}{2} \). This operator breaks conformal symmetry as well as supersymmetry and drives the CFT in the UV to another CFT in the IR with lower supersymmetries.

Keywords

Gauge-gravitycorrespondence,AdS-CFTCorrespondence,SupergravityModels 

References

  1. [1]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    T. Fischbacher, H. Nicolai and H. Samtleben, Non-semisimple and complex gaugings of N = 16 supergravity, Commun. Math. Phys. 249 (2004) 475 [hep-th/0306276] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    H. Nicolai and H. Samtleben, N = 8 matter coupled AdS 3 supergravities, Phys. Lett. B 514 (2001) 165 [hep-th/0106153] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [SPIRES].ADSGoogle Scholar
  6. [6]
    B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    T. Fischbacher, Some stationary points of gauged N = 16 D = 3 supergravity, Nucl. Phys. B 638 (2002) 207 [hep-th/0201030] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    T. Fischbacher, H. Nicolai and H. Samtleben, Vacua of maximal gauged D = 3 supergravities, Class. Quant. Grav. 19 (2002) 5297 [hep-th/0207206] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    E. Gava, P. Karndumri and K.S. Narain, AdS 3 vacua and RG flows in three dimensional gauged supergravities, JHEP 04 (2010) 117 [arXiv:1002.3760] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    M. Berg and H. Samtleben, An exact holographic RG flow between 2d conformal fixed points, JHEP 05 (2002) 006 [hep-th/0112154] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    N.S. Deger, Renormalization group flows from D = 3, N = 2 matter coupled gauged supergravities, JHEP 11 (2002) 025 [hep-th/0209188] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    H. Nishino and S. Rajpoot, Topological gauging of N = 16 supergravity in three-dimensions, Phys. Rev. D 67 (2003) 025009 [hep-th/0209106] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    F. Bernardoni, S.L. Cacciatori, B.L. Cerchiai and A. Scotti, Mapping the geometry of the F 4 group, Adv. Theor. Math. Phys. 12 (2008) 889 [arXiv:0705.3978] [SPIRES].MATHMathSciNetGoogle Scholar
  15. [15]
    S.L. Cacciatori and B.L. Cerchiai, Exceptional groups, symmetric spaces and applications, arXiv:0906.0121 [SPIRES].
  16. [16]
    S. Wolfram, The Mathematica Book, 5th ed., Wolfram Media (2003).Google Scholar
  17. [17]
    E.S. Fradkin and V.Y. Linetsky, Results of the classification of superconformal algebras in two-dimensions, Phys. Lett. B 282 (1992) 352 [hep-th/9203045] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett. B 128 (1983) 169 [SPIRES]. MathSciNetADSGoogle Scholar
  19. [19]
    W. Mueck, Correlation functions in holographic renormalization group flows, Nucl. Phys. B 620 (2002) 477 [hep-th/0105270] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    S.L. Cacciatori, B.L. Cerchiai, A. Della Vedova, G. Ortenzi and A. Scotti, Euler angles for G 2, J. Math. Phys. 46 (2005) 083512 [hep-th/0503106] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    M. Günaydin and S.V. Ketov, Seven-sphere and the exceptional N = 7 and N = 8 superconformal algebras, Nucl. Phys. B 467 (1996) 215 [hep-th/9601072] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    H. Nicolai and H. Samtleben, Chern-Simons vs. Yang-Mills gaugings in three dimensions, Nucl. Phys. B 668 (2003) 167 [hep-th/0303213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Theoretical High-Energy Physics and Cosmology Group, Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Thailand Center of Excellence in PhysicsCHE, Ministry of EducationBangkokThailand
  3. 3.INFN, Sezione di TriesteTriesteItaly
  4. 4.International School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations