The real singlet scalar dark matter model

  • Wan-Lei Guo
  • Yue-Liang Wu


We present an undated comprehensive analysis for the simplest dark matter model in which a real singlet scalar with a Z 2 symmetry is introduced to extend the standard model. According to the observed dark matter abundance, we predict the dark matter direct and indirect detection cross sections for the whole parameter space. The Breit-Wigner resonance effect has been considered to calculate the thermally averaged annihilation cross section. It is found that three regions can be excluded by the current direct and indirect dark matter search experiments. In addition, we also discuss the implication of this model for the Higgs searches at colliders.


Higgs Physics Beyond Standard Model Cosmology of Theories beyond the SM 


  1. [1]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, arXiv:1001.4538 [SPIRES].
  4. [4]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    The Fermi LAT collaboration, A.A. Abdo et al., Measurement of the Cosmic Ray e+ plus e-spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    J. Chang et al., An excess of cosmic ray electrons at energies of 300–800 GeV, Nature 456 (2008) 362 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    W.-L. Guo, Y.-L. Wu and Y.-F. Zhou, Exploration of decaying dark matter in a left-right symmetric model, Phys. Rev. D 81 (2010) 075014 [arXiv:1001.0307] [SPIRES].ADSGoogle Scholar
  8. [8]
    The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    CoGeNT collaboration, C.E. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, arXiv:1002.4703 [SPIRES].
  11. [11]
    J. McDonald, Gauge Singlet Scalars as Cold Dark Matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].ADSGoogle Scholar
  12. [12]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: A singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Self-interacting dark matter and invisibly decaying Higgs, Phys. Rev. D 62 (2000) 041302 [astro-ph/0003350] [SPIRES].ADSGoogle Scholar
  14. [14]
    C. Bird, P. Jackson, R.V. Kowalewski and M. Pospelov, Search for dark matter in b → s transitions with missing energy, Phys. Rev. Lett. 93 (2004) 201803 [hep-ph/0401195] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Cynolter, E. Lendvai and G. Pocsik, Note on unitarity constraints in a model for a singlet scalar dark matter candidate, Acta Phys. Polon. B 36 (2005) 827 [hep-ph/0410102] [SPIRES].ADSGoogle Scholar
  17. [17]
    S.-h. Zhu, Electro-weak symmetry spontaneously breaking and cold dark matter, hep-ph/0601224 [SPIRES].
  18. [18]
    X.-G. He, T. Li, X.-Q. Li and H.-C. Tsai, Scalar dark matter effects in Higgs and top quark decays, Mod. Phys. Lett. A 22 (2007) 2121 [hep-ph/0701156] [SPIRES].ADSGoogle Scholar
  19. [19]
    S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [SPIRES].ADSGoogle Scholar
  20. [20]
    C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [SPIRES].ADSGoogle Scholar
  21. [21]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on Scalar Dark Matter from Direct Experimental Searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [SPIRES]. ADSGoogle Scholar
  22. [22]
    W.-L. Guo, L.-M. Wang, Y.-L. Wu, Y.-F. Zhou and C. Zhuang, Gauge-singlet dark matter in a left-right symmetric model with spontaneous CP-violation, Phys. Rev. D 79 (2009) 055015 [arXiv:0811.2556] [SPIRES].ADSGoogle Scholar
  23. [23]
    B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    K. Kohri, J. McDonald and N. Sahu, Cosmic Ray Anomalies and Dark Matter Annihilation to Muons via a Higgs Portal Hidden Sector, Phys. Rev. D 81 (2010) 023530 [arXiv:0905.1312] [SPIRES].ADSGoogle Scholar
  25. [25]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, The Simplest Dark-Matter Model, CDMS II Results and Higgs Detection at LHC, Phys. Lett. B 688 (2010) 332 [arXiv:0912.4722] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for Constrained Dark Matter Singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [SPIRES].ADSGoogle Scholar
  27. [27]
    X.-G. He, S.-Y. Ho, J. Tandean and H.-C. Tsai, Scalar Dark Matter and Standard Model with Four Generations, Phys. Rev. D 82 (2010) 035016 [arXiv:1004.3464] [SPIRES].ADSGoogle Scholar
  28. [28]
    C. Arina, F.-X. Josse-Michaux and N. Sahu, A Tight Connection Between Direct and Indirect Detection of Dark Matter through Higgs Portal Couplings to a Hidden Sector, Phys. Rev. D 82 (2010) 015005 [arXiv:1004.3953] [SPIRES].ADSGoogle Scholar
  29. [29]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP Dark Matter overcome the Nightmare Scenario?, Phys. Rev. D 82 (2010) 055026 [ar Xiv:1005.5651] [SPIRES].ADSGoogle Scholar
  30. [30]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [SPIRES].ADSGoogle Scholar
  31. [31]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [SPIRES].ADSGoogle Scholar
  32. [32]
    A. Goudelis, Y. Mambrini and C. Yaguna, Antimatter signals of singlet scalar dark matter, JCAP 12 (2009) 008 [arXiv:0909.2799] [SPIRES].ADSGoogle Scholar
  33. [33]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    A. Bandyopadhyay, S. Chakraborty, A. Ghosal and D. Majumdar, Constraining Scalar Singlet Dark Matter with CDMS, XENON and DAMA and Prediction for Direct Detection Rates, arXiv:1003.0809 [SPIRES].
  35. [35]
    S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H.G. Tytgat, A light scalar WIMP through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595] [SPIRES]. ADSGoogle Scholar
  36. [36]
    J. McDonald, N. Sahu and U. Sarkar, Seesaw at Collider, Lepton Asymmetry and Singlet Scalar Dark Matter, JCAP 04 (2008) 037 [arXiv:0711.4820] [SPIRES].ADSGoogle Scholar
  37. [37]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  38. [38]
    J. Alcaraz, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:0911.2604 [SPIRES].
  39. [39]
    CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W+W-decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    J. Edsjo and P. Gondolo, Neutralino Relic Density including Coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].ADSGoogle Scholar
  41. [41]
    E.W. Kolb and M.S. Turner, The Early Universe Addison-Wesley, Reading, MA U.S.A. (1990).MATHGoogle Scholar
  42. [42]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    D. Feldman, Z. Liu and P. Nath, PAMELA Positron Excess as a Signal from the Hidden Sector, Phys. Rev. D 79 (2009) 063509 [arXiv:0810.5762] [SPIRES].ADSGoogle Scholar
  44. [44]
    M. Ibe, H. Murayama and T.T. Yanagida, Breit-Wigner Enhancement of Dark Matter Annihilation, Phys. Rev. D 79 (2009) 095009 [arXiv:0812.0072] [SPIRES].ADSGoogle Scholar
  45. [45]
    W.-L. Guo and Y.-L. Wu, Enhancement of Dark Matter Annihilation via Breit-Wigner Resonance, Phys. Rev. D 79 (2009) 055012 [arXiv:0901.1450] [SPIRES].ADSGoogle Scholar
  46. [46]
    J.R. Ellis, A. Ferstl and K.A. Olive, Re-evaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [SPIRES].ADSGoogle Scholar
  47. [47]
    XENON collaboration, J. Angle et al., First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    Xenon collaboration, E. Aprile, The Xenon100 Dark Matter Experiment At Lngs: Status And Sensitivity, J. Phys. Conf. Ser. 203 (2010) 012005.CrossRefADSGoogle Scholar
  49. [49]
    J. Cooley, New Results from the Final Runs of the CDMS II Experiment, SLAC seminar on Dec. 17, 2009.Google Scholar
  50. [50]
    L. Hsu, New Results from the Cryogenic Dark Matter Search, Fermilab seminar on Dec. 17, 2009.Google Scholar
  51. [51]
    E. Aprile, XENON1T: a ton scale Dark Matter Experiment, presented at UCLA Dark Matter 2010, February 26, 2010.Google Scholar
  52. [52]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [SPIRES].ADSGoogle Scholar
  53. [53]
    O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
  55. [55]
    ATLAS collaboration, M. Warsinsky, ATLAS discovery potential for Higgs bosons beyond the standard model, J. Phys. Conf. Ser. 110 (2008) 072046.CrossRefADSGoogle Scholar
  56. [56]
    F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    C. Savage, G. Gelmini, P. Gondolo and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, JCAP 04 (2009) 010 [arXiv:0808.3607] [SPIRES].ADSGoogle Scholar
  58. [58]
    XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    J.I. Collar and D.N. McKinsey, Comments on ’First Dark Matter Results from the XENON100 Experiment’, arXiv:1005.0838 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Kavli Institute for Theoretical Physics China, Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of ScienceBeijingChina

Personalised recommendations