Advertisement

On the spectral problem of \( \mathcal{N} = 4 \) SYM with orthogonal or symplectic gauge group

  • Pawel Caputa
  • Charlotte Kristjansen
  • Konstantinos Zoubos
Article

Abstract

We study the spectral problem of \( \mathcal{N} = 4 \) SYM with gauge group SO(N) and Sp(N). At the planar level, the difference to the case of gauge group SU(N) is only due to certain states being projected out, however at the non-planar level novel effects appear: While \( \frac{1}{N}{\text{-corrections}} \) in the SU(N) case are always associated with splitting and joining of spin chains, this is not so for SO(N) and Sp(N). Here the leading \( \frac{1}{N}{\text{-corrections}} \), which are due to non-orientable Feynman diagrams in the field theory, originate from a term in the dilatation operator which acts inside a single spin chain. This makes it possible to test for integrability of the leading \( \frac{1}{N}{\text{-corrections}} \) by standard (Bethe ansatz) means and we carry out various such tests. None of these point to the presence of integrability. For orthogonal and symplectic gauge group the dual string theory lives on the orientifold \( {\text{Ad}}{{\text{s}}_5} \times \mathbb{R}{{\text{P}}^5} \). We discuss various issues related to semi-classical strings on this background.

Keywords

AdS-CFTCorrespondence 1/N Expansion 

References

  1. [1]
    J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansaetze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  5. [5]
    N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288 [hep-th/0510171] [SPIRES]. CrossRefADSGoogle Scholar
  7. [7]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [SPIRES].MathSciNetGoogle Scholar
  9. [9]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS 5 × S 5 Mirror Model, JHEP 05 (2009) 068 [arXiv:0903.0141] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    N. Beisert, C. Kristjansen, J. Plefka and M. Staudacher, BMN gauge theory as a quantum mechanical system, Phys. Lett. B 558 (2003) 229 [hep-th/0212269] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    C. Kristjansen, M. Orselli and K. Zoubos, Non-planar ABJM Theory and Integrability, JHEP 03 (2009) 037 [arXiv:0811.2150] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    P. Caputa, C. Kristjansen and K. Zoubos, Non-planar ABJ Theory and Parity, Phys. Lett. B 677 (2009) 197 [arXiv:0903.3354] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    G.M. Cicuta, Topological expansion for SO(N) and Sp(2N) gauge theories, Nuovo Cim. Lett. 35 (1982) 87 [SPIRES].CrossRefMathSciNetGoogle Scholar
  14. [14]
    E. Witten, Baryons and branes in anti de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [SPIRES].ADSGoogle Scholar
  15. [15]
    E.G. Gimon and J. Polchinski, Consistency Conditions for Orientifolds and D-Manifolds, Phys. Rev. D 54 (1996) 1667 [hep-th/9601038] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    A. Doikou and R.I. Nepomechie, Parity and Charge Conjugation Symmetries and S Matrix of the XXZ Chain, hep-th/9810034 [SPIRES].
  17. [17]
    N. Beisert, J.A. Minahan, M. Staudacher and K. Zarembo, Stringing spins and spinning strings, JHEP 09 (2003) 010 [hep-th/0306139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar N = 4 super Yang-Mills, JHEP 07 (2004) 075 [hep-th/0405001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    A. Ipsen, private communication.Google Scholar
  20. [20]
    B. Chen, X.-J. Wang and Y.-S. Wu, Integrable open spin chain in super Yang-Mills and the plane-wave/SYM duality, JHEP 02 (2004) 029 [hep-th/0401016] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    B. Chen, X.-J. Wang and Y.-S. Wu, Open spin chain and open spinning string, Phys. Lett. B 591 (2004) 170 [hep-th/0403004] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    T. Erler and N. Mann, Integrable open spin chains and the doubling trick in N = 2 SYM with fundamental matter, JHEP 01 (2006) 131 [hep-th/0508064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    N. Beisert and F. Loebbert, Open Perturbatively Long-Range Integrable gl(N) Spin Chains, Adv. Sci. Lett. 2 (2009) 261 [arXiv:0805.3260] [SPIRES].Google Scholar
  24. [24]
    R.L. Mkrtchian, The equivalence of SP(2N) and SO(2N) gauge theories, Phys. Lett. B 105 (1981) 174 [SPIRES]. ADSGoogle Scholar
  25. [25]
    P. Cvitanovic and A.D. Kennedy, Spinors In Negative Dimensions, Phys. Scripta 26 (1982) 5.MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    R.A. Janik, BMN operators and string field theory, Phys. Lett. B 549 (2002) 237 [hep-th/0209263] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, A new double-scaling limit of N = 4 super Yang-Mills theory and PP-wave strings, Nucl. Phys. B 643 (2002) 3 [hep-th/0205033] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    N.R. Constable et al., PP-wave string interactions from perturbative Yang-Mills theory, JHEP 07 (2002) 017 [hep-th/0205089] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    G. Grignani, M. Orselli, B. Ramadanovic, G.W. Semenoff and D. Young, AdS/CFT vs. string loops, JHEP 06 (2006) 040 [hep-th/0605080] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. (2006) P11014 [hep-th/0603157] [SPIRES].
  32. [32]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    N. Beisert and A.A. Tseytlin, On quantum corrections to spinning strings and Bethe equations, Phys. Lett. B 629 (2005) 102 [hep-th/0509084] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    N. Beisert and T. Klose, Long-range gl(n) integrable spin chains and plane-wave matrix theory, J. Stat. Mech. (2006) P07006 [hep-th/0510124] [SPIRES].
  35. [35]
    A.S. Fokas and B. Fuchssteiner, The hierarchy of the benjamin-ono equation, Phys. Lett. A 86 (1981) 341 [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    M.G. Tetel’man, Lorentz group for two-dimensional integrable lattice systems, Zh. Eksp. Teor. Fiz. 82 (1982) 528 [Sov. Phys. JETP 55 (1982) 306].MathSciNetGoogle Scholar
  37. [37]
    T. Bargheer, N. Beisert and F. Loebbert, Boosting Nearest-Neighbour to Long-Range Integrable Spin Chains, J. Stat. Mech. (2008) L11001 [arXiv:0807.5081] [SPIRES].
  38. [38]
    T. Bargheer, N. Beisert and F. Loebbert, Long-Range Deformations for Integrable Spin Chains, J. Phys. A 42 (2009) 285205 [arXiv:0902.0956] [SPIRES].MathSciNetGoogle Scholar
  39. [39]
    M.P. Grabowski and P. Mathieu, Integrability test for spin chains, J. Phys. A 28 (1995) 4777 [hep-th/9412039] [SPIRES]. MathSciNetADSGoogle Scholar
  40. [40]
    N. Beisert and D. Erkal, Yangian Symmetry of Long-Range gl(N) Integrable Spin Chains, J. Stat. Mech. (2008) P03001 [arXiv:0711.4813] [SPIRES].
  41. [41]
    M.P. Grabowski and P. Mathieu, Quantum integrals of motion for the Heisenberg spin chain, hep-th/9403149 [SPIRES].
  42. [42]
    D. Serban and M. Staudacher, Planar N = 4 gauge theory and the Inozemtsev long range spin chain, JHEP 06 (2004) 001 [hep-th/0401057] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  44. [44]
    G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    B. Stefanski Jr., Open spinning strings, JHEP 03 (2004) 057 [hep-th/0312091] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    Z. Kakushadze, Gauge theories from orientifolds and large-N limit, Nucl. Phys. B 529 (1998) 157 [hep-th/9803214] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    S. Frolov and A.A. Tseytlin, Multi-spin string solutions in AdS 5 × S 5, Nucl. Phys. B 668 (2003) 77 [hep-th/0304255] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [SPIRES].MathSciNetGoogle Scholar
  51. [51]
    D. Gaiotto, S. Giombi and X. Yin, Spin Chains in N = 6 Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) x SU(2) sector in the string dual of N = 6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    M.C. Abbott and I. Aniceto, Giant Magnons in AdS 4 × CP 3 : Embeddings, Charges and a Hamiltonian, JHEP 04 (2009) 136 [arXiv:0811.2423] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    M.C. Abbott, I. Aniceto and O. Ohlsson Sax, Dyonic Giant Magnons in CP 3 : Strings and Curves at Finite J, Phys. Rev. D 80 (2009) 026005 [arXiv:0903.3365] [SPIRES].ADSGoogle Scholar
  55. [55]
    K. Peeters, J. Plefka and M. Zamaklar, Splitting spinning strings in AdS/CFT, JHEP 11 (2004) 054 [hep-th/0410275] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    P.Y. Casteill, R.A. Janik, A. Jarosz and C. Kristjansen, Quasilocality of joining/splitting strings from coherent states, JHEP 12 (2007) 069 [arXiv:0710.4166] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Pawel Caputa
    • 1
  • Charlotte Kristjansen
    • 2
  • Konstantinos Zoubos
    • 2
  1. 1.The Niels Bohr International Academy, The Niels Bohr InstituteCopenhagen UniversityCopenhagen ØDenmark
  2. 2.The Niels Bohr InstituteCopenhagen UniversityCopenhagen ØDenmark

Personalised recommendations