A comparison of supersymmetry breaking and mediation mechanisms



We give a unified treatment of different models of supersymmetry breaking and mediation from a four dimensional effective field theory standpoint. In particular a comparison between GMSB and various gravity mediated versions of SUSY breaking shows that, once the former is embedded within a SUGRA framework, there is no particular advantage to that mechanism from the point of view of FCNC suppression. We point out the difficulties of all these scenarios — in particular the cosmological modulus problem. We end with a discussion of possible string theory realizations.

Keywor ds Supersymmetry Phenomenology Strings and branes phenomenology 


  1. [1]
    R. Arnowitt and P. Nath, Developments in Supergravity Unified Models, arXiv: 0912.2273 [SPIRES].
  2. [2]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    S.P. de Alwis, On Anomaly Mediated SUSY Breaking, Phys. Rev. D 77 (2008) 105020 [arXiv: 0801. 0578] [SPIRES].ADSGoogle Scholar
  5. [5]
    V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A (1992).Google Scholar
  7. [7]
    Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [SPIRES].ADSGoogle Scholar
  9. [9]
    S.P. de Alwis, Classical and Quantum SUSY Breaking Effects in IIB Local Models, JHEP 03 (2010) 078 [arXiv:0912.2950] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    H. Baer, S. de Alwis, K. Givens, S. Rajagopalan and H. Summy, Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC, JHEP 05 (2010) 069 [arXiv: 1002. 4633] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Dine, Supersymmetry Breaking at Low Energies, Nucl. Phys. Proc. Suppl. 192-193 (2009) 40 [arXiv:0901.1713] [SPIRES].CrossRefMathSciNetGoogle Scholar
  14. [14]
    B.S. Acharya et al., Non-thermal Dark Matter and the Moduli Problem in String Frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    L. Covi et al., de Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    G.F. Giudice and R. Rattazzi, Extracting Supersymmetry-Breaking Effects from Wave-Function Renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    R. Kitano, Gravitational gauge mediation, Phys. Lett. B 641 (2006) 203 [hep-ph/ 0607090] [SPIRES]. ADSGoogle Scholar
  18. [18]
    S.P. de Alwis, On gauge mediated SUSY breaking and moduli stabilization, Phys. Rev. D 76 (2007) 086001 [hep-th/0703247] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Cvetič and T. Weigand, A string theoretic model of gauge mediated supersymmetry beaking, arXiv:0807.3953 [SPIRES].
  20. [20]
    Z. Lalak, S. Pokorski and K. Turzynski, Gravity in Gauge Mediation, JHEP 10 (2008) 016 [arXiv: 0808.0470] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    E. Dudas, Y. Mambrini, S. Pokorski, A. Romagnoni and M. Trapletti, Gauge vs. Gravity mediation in models with anomalous U(1)’s, JHEP 03 (2009) 011 [arXiv: 0809.5064] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    G. Kane, String theory, Moduli, Dark Matter, and Cosmological History, talk given at KIT P workshop, Strings at the LHC and in the Early Universe, Santa Barbara California U.S.A., March 8 – May 14 2010.Google Scholar
  23. [23]
    B.S. Acharya, G. Kane, S. Watson and P. Kumar, A Non-thermal WIMP Miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [SPIRES].ADSGoogle Scholar
  24. [24]
    K. Choi, J.S. Lee and C. Muñoz, Supergravity radiative effects on soft terms and the mu term, Phys. Rev. Lett. 80 (1998) 3686 [hep-ph/9709250] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    J. Louis and Y. Nir, Some phenomenological implications of string loop effects, Nucl. Phys. B 447 (1995) 18 [hep-ph/9411429] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of Moduli Stabilisation in Calabi-Yau Flux Compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    M.R. Douglas, Statistical analysis of the supersymmetry breaking scale, hep-t h/ 0405279 [SPIRES].
  28. [28]
    S. de Alwis and Z. Lalak, String T heory and GMSB, work in progress (2010).Google Scholar
  29. [29]
    J.P. Conlon, A. Maharana and F. Quevedo, Towards Realistic String Vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    S.P. de Alwis, Mediation of Supersymmetry Breaking in a Class of String Theory Models, JHEP 03 (2009) 023 [arXiv:0806.2672] [SPIRES].CrossRefGoogle Scholar
  32. [32]
    C.P. Burgess, A. Maharana and F. Quevedo, Uber-naturalness: unexpectedly light scalars from supersymmetric extra dimensions, arXiv:1005.1199 [SPIRES].
  33. [33]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G2 -MSSM –An M Theory motivated model of Particle Physics, Phys. Rev. D 78 (2008) 065038 [arXiv: 0801. 0478] [SPIRES].ADSGoogle Scholar
  34. [34]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of ColoradoBoulderU.S.A.

Personalised recommendations