Cosmic strings from pseudo-anomalous Fayet-Iliopoulos U(1)FI in D3/D7 brane inflation

  • Rhiannon Gwyn
  • Mairi Sakellariadou
  • Spyros Sypsas


We examine the consequences of recent developments on Fayet-Iliopoulos (FI) terms for D-term inflationary models. There is currently no known way to couple constant FI terms to supergravity consistently; only field-dependent FI terms are allowed. These are natural in string theory and we argue that the FI term in D3/D7 inflation turns out to be of this type, corresponding to a pseudo-anomalous U(1)FI. The anomaly is canceled by the Green-Schwarz (GS) mechanism in 4 dimensions. Inflation proceeds as usual, except that the scale is set by the GS parameter δGS. Cosmic strings resulting from a pseudo-anomalous U(1) have potentially interesting characteristics. Originally expected to be global, they turn out to be local in the string theory context and can support currents. We outline the nature of these strings, discuss bounds on their formation, and summarize resulting cosmological consequences.


Large Extra Dimensions Intersecting branes models Supergravity Models String theory and cosmic strings 


  1. [1]
    J. Rocher and M. Sakellariadou, D-term inflation, cosmic strings, and consistency with cosmic microwave background measurement, Phys. Rev. Lett. 94 (2005) 011303 [hep-ph/0412143] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    J. Rocher and M. Sakellariadou, D-term inflation in non-minimal supergravity, JCAP 11 (2006) 001 [hep-th/0607226] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    M. Haack et al., Update of D3/D7-brane inflation on K3 × T 2 /Z 2, Nucl. Phys. B 806 (2009) 103 [arXiv:0804.3961] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    R. Durrer, M. Kunz and M. Sakellariadou, Why do we live in 3+1 dimensions?, Phys. Lett. B 614 (2005) 125 [hep-th/0501163] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    W. Nelson and M. Sakellariadou, Space-time dimensionality from brane collisions, Phys. Lett. B 674 (2009) 210 [arXiv:0810.0363] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    J. Polchinski, Cosmic superstrings revisited, AIP Conf. Proc. 743 (2005) 331 [hep-th/0410082] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    A.C. Davis and T.W.B. Kibble, Fundamental cosmic strings, Contemp. Phys. 46 (2005) 313 [hep-th/0505050] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    M. Sakellariadou, Cosmic superstrings, Phil. Trans. Roy. Soc. Lond. A 366 (2008) 2881 [arXiv:0802. 3379] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    M. Sakellariadou, Cosmic strings and cosmic superstrings, Nucl. Phys. Proc. Suppl. 192-193 (2009) 68 [arXiv:0902.0569] [SPIRES].CrossRefMathSciNetGoogle Scholar
  10. [10]
    E.J. Copeland and T.W.B. Kibble, Cosmic strings and superstrings, Proc. Roy. Soc. Lond. A 466 (2010) 623 [arXiv:0911.1345] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    R. Jeannerot, J. Rocher and M. Sakellariadou, How generic is cosmic string formation in SUSY GUTs, Phys. Rev. D 68 (2003) 103514 [hep-ph/0308134] [SPIRES].ADSGoogle Scholar
  12. [12]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    K.R. Dienes and B. Thomas, On the inconsistency of Fayet-Iliopoulos terms in supergravity theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [SPIRES].ADSGoogle Scholar
  14. [14]
    S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [SPIRES]. CrossRefADSGoogle Scholar
  15. [15]
    Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, arXiv:1002.2228 [SPIRES].
  16. [16]
    N. Seiberg, Modifying the sum over topological sectors and constraints on supergravity, arXiv:1005. 0002 [SPIRES].
  17. [17]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos terms in string theory, Nucl. Phys. B 289 (1987) 589 [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    M. Dine, I. Ichinose and N. Seiberg, F terms and d terms in string theory, Nucl. Phys. B 293 (1987) 253 [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    J.J. Atick, L.J. Dixon and A. Sen, String calculation of Fayet-Iliopoulos d terms in arbitrary supersymmetric compactifications, Nucl. Phys. B 292 (1987) 109 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, D3/D7inflationary model and M theory, Phys. Rev. D 65 (2002) 126002 [hep-th/0203019] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    K. Dasgupta, J.P. Hsu, R. Kallosh, A.D. Linde and M. Zagermann, D3/D7 brane inflation and semilocal strings, JHEP 08 (2004) 030 [hep-th/0405247] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    M. Berkooz, M.R. Douglas and R.G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    C. Herdeiro, S. Hirano and R. Kallosh, String theory and hybrid inflation/acceleration, JHEP 12 (2001) 027 [hep-th/0110271] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, Fayet-Iliopoulos terms in supergravity and cosmology, Class. Quant. Grav. 21 (2004) 3137 [hep-th/0402046] [SPIRES].MATHCrossRefADSGoogle Scholar
  26. [26]
    C.P. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D-terms, JHEP 10 (2003) 056 [hep-th/0309187] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    J.A. Casas, J.M. Moreno, C. Muñoz and M. Quirós, Cosmological implications of an anomalous U(1): inflation, cosmic strings and constraints on superstring parameters, Nucl. Phys. B 328 (1989) 272 [SPIRES]. CrossRefADSGoogle Scholar
  28. [28]
    J.A. Harvey and S.G. Naculich, Cosmic strings from pseudoanomalous U(1)s, Phys. Lett. B 217 (1989) 231 [SPIRES].ADSGoogle Scholar
  29. [29]
    E.J. Copeland, R.C. Myers and J. Polchinski, Cosmic F and D strings, JHEP 06 (2004) 013 [hep-th/0312067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    P. Binetruy, C. Deffayet and P. Peter, Global vs local cosmic strings from pseudo-anomalous U(1) Phys. Lett. B 441 (1998) 52 [hep-ph/9807233] [SPIRES].ADSGoogle Scholar
  31. [31]
    S. C. Davis, P. Binetruy and A.-C. Davis, Local axion cosmic strings from superstrings, Phys. Lett. B 611 (2005) 39 [hep-th/0501200] [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Kallosh, N=2 supersymmetry and de Sitter space, hep-th/0109168 [SPIRES].
  33. [33]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, IOP, Bristol, U.K. (1998).MATHGoogle Scholar
  34. [34]
    E. Witten, Dimensional reduction of superstring models, Phys. Lett. B 155 (1985) 151 [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    N. Arkani-Hamed, M. Dine and S.P. Martin, Dynamical supersymmetry breaking in models with a Green-Schwarz mechanism, Phys. Lett. B 431 (1998) 329 [hep-ph/9803432] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    P. Binetruy and G.R. Dvali, D-term inflation, Phys. Lett. B 388 (1996) 241 [hep-ph/9606342] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    S.C. Davis, A.-C. Davis and M. Trodden, N=1 supersymmetric cosmic strings, Phys. Lett. B 405 (1997) 257 [hep-ph/9702360] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    R. Jeannerot and M. Postma, Chiral cosmic strings in supergravity, JHEP 12 (2004) 043 [hep-ph/0411260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    P. Brax, C. van de Bruck, A.C. Davis and S.C. Davis, Fermionic zero modes of supergravity cosmic strings, JHEP 06 (2006) 030 [hep-th/0604198] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    A.C. Davis, T.W.B. Kibble, M. Pickles and D.A. Steer, Dynamics and properties of chiral cosmic strings in Minkowski space, Phys. Rev. D 62 (2000) 083516 [astro-ph/0005514] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    E. Babichev and V. Dokuchaev, Gravitational radiation from chiral string cusps, Phys. Rev. D 67 (2003) 125016 [astro-ph/0303659] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    R. Gwyn, S.H. Alexander, R.H. Brandenberger and K. Dasgupta, Magnetic fields from heterotic cosmic strings, Phys. Rev. D 79 (2009) 083502 [arXiv:0811.1993] [SPIRES].ADSGoogle Scholar
  43. [43]
    R.L. Davis and E.P.S. Shellard, Cosmic vortons, Nucl. Phys. B 323 (1989) 209 [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    J. Urrestilla, A. Achucarro and A.C. Davis, D-term inflation without cosmic strings, Phys. Rev. Lett. 92 (2004) 251302 [hep-th/0402032] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    P. Chen, K. Dasgupta, K. Narayan, M. Shmakova and M. Zagermann, Brane inflation, solitons and cosmological solutions: I, JHEP 09 (2005) 009 [hep-th/0501185] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Rhiannon Gwyn
    • 1
  • Mairi Sakellariadou
    • 1
  • Spyros Sypsas
    • 1
  1. 1.Department of Physics, King’s College LondonUniversity of LondonStrandU.K.

Personalised recommendations